55 research outputs found
Periodically poled silicon (PePSi) for efficient and electronically-tuned nonlinear optics in silicon
Periodically poled silicon (PePSi) induces substantial 2nd order optical nonlinearity and at the same time achieves quasi-phase matching. PePSi is made by alternating strain gradients along the waveguide using periodic arrangement of stressed cladding layers. © 2013 OSA.published_or_final_versio
Role of 3′UTRs in the Translation of mRNAs Regulated by Oncogenic eIF4E—A Computational Inference
Eukaryotic cap-dependent mRNA translation is mediated by the initiation factor eIF4E, which binds mRNAs and stimulates efficient translation initiation. eIF4E is often overexpressed in human cancers. To elucidate the molecular signature of eIF4E target mRNAs, we analyzed sequence and structural properties of two independently derived polyribosome recruited mRNA datasets. These datasets originate from studies of mRNAs that are actively being translated in response to cells over-expressing eIF4E or cells with an activated oncogenic AKT: eIF4E signaling pathway, respectively. Comparison of eIF4E target mRNAs to mRNAs insensitive to eIF4E-regulation has revealed surprising features in mRNA secondary structure, length and microRNA-binding properties. Fold-changes (the relative change in recruitment of an mRNA to actively translating polyribosomal complexes in response to eIF4E overexpression or AKT upregulation) are positively correlated with mRNA G+C content and negatively correlated with total and 3′UTR length of the mRNAs. A machine learning approach for predicting the fold change was created. Interesting tendencies of secondary structure stability are found near the start codon and at the beginning of the 3′UTR region. Highly upregulated mRNAs show negative selection (site avoidance) for binding sites of several microRNAs. These results are consistent with the emerging model of regulation of mRNA translation through a dynamic balance between translation initiation at the 5′UTR and microRNA binding at the 3′UTR
Administered circulating microparticles derived from lung cancer patients markedly improved angiogenesis, blood flow and ischemic recovery in rat critical limb ischemia.
We hypothesized that lung cancer patient's circulating microparticles (Lc-MPs) could promote angiogenesis, blood flow in ischemic zone and ischemic recovery in rat critical limb ischemia (CLI).This article is freely available via Open Access. Click on the 'Additional Link' above to access the full-text via the publisher's site.Published (Open Access
Erratum: Periodically poled silicon (Applied Physics Letter (2009) 94 (091116))
link_to_subscribed_fulltex
Stress-induced χ(2) in silicon - Comparison between theoretical and experimental values
We provide a new theoretical estimation of stressinduced χ(2) in silicon and highlight the fact that there exists a large difference between theoretical and experimentally measured values. Possible reasons for this discrepancy are discussed. © 2009 IEEE.link_to_subscribed_fulltex
Periodically poled silicon
Bulk centrosymmetric silicon lacks second-order optical nonlinearity χ(2) - a foundational component of nonlinear optics. Here, we propose a new class of photonic device which enables χ(2) as well as quasi-phase matching based on periodic stress fields in silicon - periodically-poled silicon (PePSi). This concept adds the periodic poling capability to silicon photonics, and allows the excellent crystal quality and advanced manufacturing capabilities of silicon to be harnessed for devices based on χ(2)) effects. The concept can also be simply achieved by having periodic arrangement of stressed thin films along a silicon waveguide. As an example of the utility, we present simulations showing that mid-wave infrared radiation can be efficiently generated through difference frequency generation from near-infrared with a conversion efficiency of 50% based on χ(2) values measurements for strained silicon reported in the literature [Jacobson et al. Nature 441, 199 (2006)]. The use of PePSi for frequency conversion can also be extended to terahertz generation. With integrated piezoelectric material, dynamically control of χ(2)nonlinearity in PePSi waveguide may also be achieved. The successful realization of PePSi based devices depends on the strength of the stress induced χ(2) in silicon. Presently, there exists a significant discrepancy in the literature between the theoretical and experimentally measured values. We present a simple theoretical model that produces result consistent with prior theoretical works and use this model to identify possible reasons for this discrepancy. © 2010 Copyright SPIE - The International Society for Optical Engineering.link_to_subscribed_fulltex
Interferon-β therapy reduces CD4+ and CD8+ T-cell reactivity in multiple sclerosis
Therapy with interferon-β (IFN-β) has well-established clinical effects in multiple sclerosis (MS), albeit the immunomodulatory mechanisms are not fully understood. We assessed the prevalence and functional capacity of CD4+ and CD8+ T cells in healthy donors, and in untreated and IFN-β-treated MS patients, in response to myelin oligodendrocyte glycoprotein (MOG). The proportion of CD45RO+ memory T cells was higher in MS patients than in healthy donors, but returned to normal values upon therapy with IFN-β. While CD45RO+ CD4+ T cells from all three groups responded to MOG in vitro, untreated patients showed augmented proliferative responses compared to healthy individuals and IFN-β treatment reduced this elevated reactivity back to the values observed in healthy donors. Similarly, the response of CD45RO+ CD8+ T cells to MOG was strongest in untreated patients and decreased to normal values upon immunotherapy. Overall, the frequency of peripheral CD45RO+ memory T cells ex vivo correlated with the strength of the cellular in vitro response to MOG in untreated patients but not in healthy donors or IFN-β-treated patients. Compared with healthy individuals, responding CD4+ and CD8+ cells were skewed towards a type 1 cytokine phenotype in untreated patients, but towards a type 2 phenotype under IFN-β therapy. Our data suggest that the beneficial effect of IFN-β in MS might be the result of the suppression or depletion of autoreactive, pro-inflammatory memory T cells in the periphery. Assessment of T-cell subsets and their reactivity to MOG may represent an important diagnostic tool for monitoring successful immunotherapy in MS
- …