13 research outputs found

    Neurovascular unit dysfunction with blood-brain barrier hyperpermeability contributes to major depressive disorder: a review of clinical and experimental evidence

    Get PDF
    About one-third of people with major depressive disorder (MDD) fail at least two antidepressant drug trials at 1 year. Together with clinical and experimental evidence indicating that the pathophysiology of MDD is multifactorial, this observation underscores the importance of elucidating mechanisms beyond monoaminergic dysregulation that can contribute to the genesis and persistence of MDD. Oxidative stress and neuroinflammation are mechanistically linked to the presence of neurovascular dysfunction with blood-brain barrier (BBB) hyperpermeability in selected neurological disorders, such as stroke, epilepsy, multiple sclerosis, traumatic brain injury, and Alzheimer’s disease. In contrast to other major psychiatric disorders, MDD is frequently comorbid with such neurological disorders and constitutes an independent risk factor for morbidity and mortality in disorders characterized by vascular endothelial dysfunction (cardiovascular disease and diabetes mellitus). Oxidative stress and neuroinflammation are implicated in the neurobiology of MDD. More recent evidence links neurovascular dysfunction with BBB hyperpermeability to MDD without neurological comorbidity. We review this emerging literature and present a theoretical integration between these abnormalities to those involving oxidative stress and neuroinflammation in MDD. We discuss our hypothesis that alterations in endothelial nitric oxide levels and endothelial nitric oxide synthase uncoupling are central mechanistic links in this regard. Understanding the contribution of neurovascular dysfunction with BBB hyperpermeability to the pathophysiology of MDD may help to identify novel therapeutic and preventative approaches

    Subclinical hypothyroidism in childhood — current knowledge and open issues

    No full text
    Subclinical hypothyroidism is defined as serum levels of TSH above the upper limit of the reference range, in the presence of normal concentrations of total T4 or free T4. This biochemical profile might be an indication of mild hypothyroidism, with a potential increased risk of metabolic abnormalities and cardiovascular disease recorded among adults. Whether subclinical hypothyroidism results in adverse health outcomes among children is a matter of debate and so management of this condition remains challenging. Mild forms of untreated subclinical hypothyroidism do not seem to be associated with impairments in growth, bone health or neurocognitive outcome. However, ongoing scientific investigations have highlighted the presence of subtle proatherogenic abnormalities among children with modest elevations in their TSH levels. Although current findings are insufficient to recommend levothyroxine treatment for all children with mild asymptomatic forms of subclinical hypothyroidism, they highlight the potential need for assessment of cardiovascular risk among children with this condition. Increased understanding of the early metabolic risk factors associated with subclinical hypothyroidism in childhood will help to improve the management of affected individuals

    Lipid Metabolism

    No full text
    corecore