4,664 research outputs found
Phase Diagram of a 2D Vertex Model
Phase diagram of a symmetric vertex model which allows 7 vertex
configurations is obtained by use of the corner transfer matrix renormalization
group (CTMRG), which is a variant of the density matrix renormalization group
(DMRG). The critical indices of this model are identified as and
.Comment: 2 pages, 5 figures, short not
Numerical Latent Heat Observation of the q=5 Potts Model
Site energy of the five-state ferromagnetic Potts model is numerically
calculated at the first-order transition temperature using corner transfer
matrix renormalization group (CTMRG) method. The calculated energy of the
disordered phase is clearly different from that of the ordered phase
. The obtained latent heat is 0.027, which
quantitatively agrees with the exact solution.Comment: 2 pages, Latex(JPSJ style files are included), 2 ps figures,
submitted to J. Phys. Soc. Jpn.(short note
Snapshot Observation for 2D Classical Lattice Models by Corner Transfer Matrix Renormalization Group
We report a way of obtaining a spin configuration snapshot, which is one of
the representative spin configurations in canonical ensemble, in a finite area
of infinite size two-dimensional (2D) classical lattice models. The corner
transfer matrix renormalization group (CTMRG), a variant of the density matrix
renormalization group (DMRG), is used for the numerical calculation. The matrix
product structure of the variational state in CTMRG makes it possible to
stochastically fix spins each by each according to the conditional probability
with respect to its environment.Comment: 4 pages, 8figure
The Density Matrix Renormalization Group technique with periodic boundary conditions
The Density Matrix Renormalization Group (DMRG) method with periodic boundary
conditions is introduced for two dimensional classical spin models. It is shown
that this method is more suitable for derivation of the properties of infinite
2D systems than the DMRG with open boundary conditions despite the latter
describes much better strips of finite width. For calculation at criticality,
phenomenological renormalization at finite strips is used together with a
criterion for optimum strip width for a given order of approximation. For this
width the critical temperature of 2D Ising model is estimated with seven-digit
accuracy for not too large order of approximation. Similar precision is reached
for critical indices. These results exceed the accuracy of similar calculations
for DMRG with open boundary conditions by several orders of magnitude.Comment: REVTeX format contains 8 pages and 6 figures, submitted to Phys. Rev.
Incommensurate structures studied by a modified Density Matrix Renormalization Group Method
A modified density matrix renormalization group (DMRG) method is introduced
and applied to classical two-dimensional models: the anisotropic triangular
nearest- neighbor Ising (ATNNI) model and the anisotropic triangular
next-nearest-neighbor Ising (ANNNI) model. Phase diagrams of both models have
complex structures and exhibit incommensurate phases. It was found that the
incommensurate phase completely separates the disordered phase from one of the
commensurate phases, i. e. the non-existence of the Lifshitz point in phase
diagrams of both models was confirmed.Comment: 14 pages, 14 figures included in text, LaTeX2e, submitted to PRB,
presented at MECO'24 1999 (Wittenberg, Germany
Critical Point of a Symmetric Vertex Model
We study a symmetric vertex model, that allows 10 vertex configurations, by
use of the corner transfer matrix renormalization group (CTMRG), a variant of
DMRG. The model has a critical point that belongs to the Ising universality
class.Comment: 2 pages, 6 figures, short not
A Density Matrix Algorithm for 3D Classical Models
We generalize the corner transfer matrix renormalization group, which
consists of White's density matrix algorithm and Baxter's method of the corner
transfer matrix, to three dimensional (3D) classical models. The
renormalization group transformation is obtained through the diagonalization of
density matrices for a cubic cluster. A trial application for 3D Ising model
with m=2 is shown as the simplest case.Comment: 15 pages, Latex(JPSJ style files are included), 8 ps figures,
submitted to J. Phys. Soc. Jpn., some references are correcte
- …