4,664 research outputs found

    Phase Diagram of a 2D Vertex Model

    Full text link
    Phase diagram of a symmetric vertex model which allows 7 vertex configurations is obtained by use of the corner transfer matrix renormalization group (CTMRG), which is a variant of the density matrix renormalization group (DMRG). The critical indices of this model are identified as β=1/8\beta = 1/8 and α=0\alpha = 0.Comment: 2 pages, 5 figures, short not

    Numerical Latent Heat Observation of the q=5 Potts Model

    Full text link
    Site energy of the five-state ferromagnetic Potts model is numerically calculated at the first-order transition temperature using corner transfer matrix renormalization group (CTMRG) method. The calculated energy of the disordered phase U+U^{+} is clearly different from that of the ordered phase U−U^{-}. The obtained latent heat L=U−−U+L = U^{-} - U^{+} is 0.027, which quantitatively agrees with the exact solution.Comment: 2 pages, Latex(JPSJ style files are included), 2 ps figures, submitted to J. Phys. Soc. Jpn.(short note

    Snapshot Observation for 2D Classical Lattice Models by Corner Transfer Matrix Renormalization Group

    Full text link
    We report a way of obtaining a spin configuration snapshot, which is one of the representative spin configurations in canonical ensemble, in a finite area of infinite size two-dimensional (2D) classical lattice models. The corner transfer matrix renormalization group (CTMRG), a variant of the density matrix renormalization group (DMRG), is used for the numerical calculation. The matrix product structure of the variational state in CTMRG makes it possible to stochastically fix spins each by each according to the conditional probability with respect to its environment.Comment: 4 pages, 8figure

    The Density Matrix Renormalization Group technique with periodic boundary conditions

    Full text link
    The Density Matrix Renormalization Group (DMRG) method with periodic boundary conditions is introduced for two dimensional classical spin models. It is shown that this method is more suitable for derivation of the properties of infinite 2D systems than the DMRG with open boundary conditions despite the latter describes much better strips of finite width. For calculation at criticality, phenomenological renormalization at finite strips is used together with a criterion for optimum strip width for a given order of approximation. For this width the critical temperature of 2D Ising model is estimated with seven-digit accuracy for not too large order of approximation. Similar precision is reached for critical indices. These results exceed the accuracy of similar calculations for DMRG with open boundary conditions by several orders of magnitude.Comment: REVTeX format contains 8 pages and 6 figures, submitted to Phys. Rev.

    Incommensurate structures studied by a modified Density Matrix Renormalization Group Method

    Full text link
    A modified density matrix renormalization group (DMRG) method is introduced and applied to classical two-dimensional models: the anisotropic triangular nearest- neighbor Ising (ATNNI) model and the anisotropic triangular next-nearest-neighbor Ising (ANNNI) model. Phase diagrams of both models have complex structures and exhibit incommensurate phases. It was found that the incommensurate phase completely separates the disordered phase from one of the commensurate phases, i. e. the non-existence of the Lifshitz point in phase diagrams of both models was confirmed.Comment: 14 pages, 14 figures included in text, LaTeX2e, submitted to PRB, presented at MECO'24 1999 (Wittenberg, Germany

    Critical Point of a Symmetric Vertex Model

    Full text link
    We study a symmetric vertex model, that allows 10 vertex configurations, by use of the corner transfer matrix renormalization group (CTMRG), a variant of DMRG. The model has a critical point that belongs to the Ising universality class.Comment: 2 pages, 6 figures, short not

    A Density Matrix Algorithm for 3D Classical Models

    Full text link
    We generalize the corner transfer matrix renormalization group, which consists of White's density matrix algorithm and Baxter's method of the corner transfer matrix, to three dimensional (3D) classical models. The renormalization group transformation is obtained through the diagonalization of density matrices for a cubic cluster. A trial application for 3D Ising model with m=2 is shown as the simplest case.Comment: 15 pages, Latex(JPSJ style files are included), 8 ps figures, submitted to J. Phys. Soc. Jpn., some references are correcte
    • …
    corecore