4,390 research outputs found
SOLAR-A
The DSN (Deep Space Network) mission support requirements for SOLAR-A are summarized. The SOLAR-A mission objectives are to investigate high energy phenomena of the Sun using x-ray telescopes and spectrometers during the maximum activity period of the solar cycle. The spacecraft will be launched into a circular earth orbit of approximately 500 km altitude and 31 deg inclination. The mission objectives are outlined and the DSN support requirements are defined through the presentation of tables and narratives describing the spacecraft profile; DSN support coverage; frequency assignments; support parameters for telemetry, command and support systems; and tracking support responsibility
Space Flyer Unit (SFU)
The DSN (Deep Space Network) mission support requirements for the Space Flyer Unit (SFU) are summarized. The SFU is an unmanned, reusable, and retrievable free-flying platform for multipurpose use. The SFU spacecraft will carry seven individual experiments to be completed during its mission period. The mission objectives are outlined and the DSN support requirements are defined through the presentation of tables and narratives describing the spacecraft flight profile; DSN support coverage; frequency assignments; support parameters for telemetry, command and support systems; and tracking support responsibility
Dynamical analysis of outflow from tornado- producing thunderstorms as revealed by ATS 3 pictures
Dynamical analysis of outflow from tornado producing thunderstorms as revealed by ATS 3 picture
Quark-Jet model for transverse momentum dependent fragmentation functions
In order to describe the hadronization of polarized quarks, we discuss an
extension of the quark-jet model to transverse momentum dependent fragmentation
functions. The description is based on a product ansatz, where each factor in
the product represents one of the transverse momentum dependent splitting
functions, which can be calculated by using effective quark theories. The
resulting integral equations and sum rules are discussed in detail for the case
of inclusive pion production. In particular, we demonstrate that the
3-dimensional momentum sum rules are satisfied naturally in this transverse
momentum dependent quark-jet model. Our results are well suited for numerical
calculations in effective quark theories, and can be implemented in Monte-Carlo
simulations of polarized quark hadronization processes.Comment: 19 pages, 4 figure
Increasing the Reliability of Adaptive Quadrature Using Explicit Interpolants
We present two new adaptive quadrature routines. Both routines differ from
previously published algorithms in many aspects, most significantly in how they
represent the integrand, how they treat non-numerical values of the integrand,
how they deal with improper divergent integrals and how they estimate the
integration error. The main focus of these improvements is to increase the
reliability of the algorithms without significantly impacting their efficiency.
Both algorithms are implemented in Matlab and tested using both the "families"
suggested by Lyness and Kaganove and the battery test used by Gander and
Gautschi and Kahaner. They are shown to be more reliable, albeit in some cases
less efficient, than other commonly-used adaptive integrators.Comment: 32 pages, submitted to ACM Transactions on Mathematical Softwar
A Note on Asymptotic Freedom at High Temperatures
This short note considers, within the external field approach outlined in
hep-ph/0202026, the role of the lowest lying gluon Landau mode in QCD in the
high temperature limit. Its influence on a temperature- and field-dependent
running coupling constant is examined. The thermal imaginary part of the mode
is temperature-independent in our approach and exactly cancels the well-known
zero temperature imaginary part, thus rendering the Savvidy vacuum stable.
Combining the real part of the mode with the contributions from the higher
lying Landau modes and the vacuum contribution, a field-independent coupling
alpha_s(T) is obtained. It can be interpreted as the ordinary zero temperature
running coupling constant with average thermal momenta \approx 2pi T for
gluons and \approx pi T for quarks.Comment: 4 pages; minor changes, version to appear in Phys. Rev.
Fermion Condensate and Vacuum Current Density Induced by Homogeneous and Inhomogeneous Magnetic Fields in (2+1)-Dimensions
We calculate the condensate and the vacuum current density induced by
external static magnetic fields in (2+1)-dimensions. At the perturbative level,
we consider an exponentially decaying magnetic field along one cartesian
coordinate. Non-perturbatively, we obtain the fermion propagator in the
presence of a uniform magnetic field by solving the Schwinger-Dyson equation in
the rainbow-ladder approximation. In the large flux limit, we observe that both
these quantities, either perturbative (inhomogeneous) and non-perturbative
(homogeneous), are proportional to the external field, in agreement with early
expectations.Comment: 8 pages, 2 figures. Accepted for publication in Phys. Rev.
Glycosylation pattern of brush border-associated glycoproteins in enterocyte-like cells: involvement of complex-type N-glycans in apical trafficking
We have previously reported that galectin-4, a tandem repeat-type galectin, regulates the raft-dependent delivery of glycoproteins to the apical brush border membrane of enterocyte-like HT-29 cells. N-Acetyllactosamine-containing glycans, known as galectin ligands, were found enriched in detergent-resistant membranes. Here, we analyzed the potential contribution of N-and/ or O-glycans in this mechanism. Structural studies were carried out on the brush border membrane-enriched fraction using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and nano-ESI-QTOF-MS/MS. The pattern of N-glycans was very heterogeneous, with the presence of high mannose- and hybrid-type glycans as well as a multitude of complex-type glycans. In contrast, the pattern of O-glycans was very simple with the presence of two major core type 1 O-glycans, sialylated and bisialylated T-antigen structures {[}Neu5Ac alpha 2-3Gal beta 1-3GalNAc-ol and Neu5Ac alpha 2-3Gal beta 1 -3(Neu5Ac alpha 2-6)GalNAc-ol]. Thus, N-glycans rather than O-glycans contain the N-acetyllactosamine recognition signals for the lipid raft-based galectin-4-dependent apical delivery. In the presence of 1-deoxymannojirimycin, a drug which inhibits the generation of hybrid-type or complex type N-glycans, the extensively O-glycosylated mucin-like MUC1 glycoprotein was not delivered to the apical brush border but accumulated inside the cells. Altogether, our data demonstrate the crucial role of complex N-glycans in the galectin-4-dependent delivery of glycoproteins to the apical brush border membrane of enterocytic HT-29 cells
Phase transitions in spin-orbital coupled model for pyroxene titanium oxides
We study the competing phases and the phase transition phenomena in an
effective spin-orbital coupled model derived for pyroxene titanium oxides
ATiSi2O6 (A=Na, Li). Using the mean-field-type analysis and the numerical
quantum transfer matrix method, we show that the model exhibits two different
ordered states, the spin-dimer and orbital-ferro state and the spin-ferro and
orbital-antiferro state. The transition between two phases is driven by the
relative strength of the Hund's-rule coupling to the onsite Coulomb repulsion
and/or by the external magnetic field. The ground-state phase diagram is
determined. There is a keen competition between orbital and spin degrees of
freedom in the multicritical regime, which causes large fluctuations and
significantly affects finite-temperature properties in the paramagnetic phase.Comment: 4 pages, 6 figures, proceedings submitted to SPQS200
- …