228 research outputs found
Recommended from our members
Fabrication of Gas-Filled Tungsten-Coated Glass Shells
OAK-B135 Deuterium (D{sub 2}) filled glass shells coated with a high Z element are needed for high energy density (HED) experiments by researchers at Los Alamos National Laboratory. They report here on our initial attempt to produce such shells. Glass shells made using the drop tower technique were coated with gold, palladium or tungsten, or a mixture of two of these elements. It was found that gold and palladium coatings did not stick well to the glass and resulted in poor or delaminated films. Tungsten coatings resulted in films suitable for these targets. Bouncing of shells during coating resulted in uniform tungsten coatings, but the surface of such coatings were filled with small nodules. Proper agitation of shells using a tapping technique resulted in smooth films with minimal particulate contamination. For coating rates of {approx} 0.15 {micro}m/hr coatings with {approx} 2 nm RMS surface finish could be deposited. The surface roughness of coatings at higher rates, 0.7 {micro}m/hr, was considerably worse ({approx} 100 nm RMS). The columnar structure of the coatings allowed permeation filling of the tungsten coated glass shells with deuterium at 300 C
Permeation Fill-Tube Design for Inertial Confinement Fusion Target Capsules
A unique approach for permeation filling of nonpermeable inertial confinement fusion target capsules with deuterium— tritium (DT) is presented. This process uses a permeable capsule coupled into the final target capsule with a 0.03-mm-diameter fill tube. Leak free permeation filling of glow-discharge polymerization (GDP) targets using this method have been successfully demonstrated, as well as ice layering of the target, yielding an inner ice surface roughness of 1-µm rms (root mean square). Finally, the measured DT ice-thickness profile for this experiment was used to validate a thermal model’s prediction of the same thickness profile
Composition and Structural Studies of Strong Glow Discharge Polymer Coatings
OAK A271 COMPOSITION AND STRUCTURAL STUDIES OF STRONG GLOW DISCHARGE POLYMER COATINGS. An investigation of the chemical composition and structure of strong glow discharge (GDP) polymer shells made for cryogenic experiments at OMEGA is described. The investigation was carried out using combustion and Fourier Transform Infrared Spectroscopy (FTIR) analysis. The strongest coatings were observed to have the lowest hydrogen content or hydrogen/carbon H/C ratio, whereas the weakest coatings had the highest hydrogen content or H/C ratio. Chemical composition results from combustion were used to complement FTIR analysis to determine the relative hydrogen content of as-fabricated coatings. Good agreement was observed between composition results obtained from combustion and FTIR analysis. FTIR analysis of coating structures showed the strongest coatings to have less terminal methyl groups and a more double bond or olefinic structure. Strong GDP coatings that were aged in air react more with oxygen and moisture than standard GDP coatings. In addition to a more olefinic structure, there may also be more free-radial sites present in strong GDP coatings, which leads to greater oxygen uptake
Recommended from our members
PREPARATION OF CU-DOPED GLOW DISCHARGE POLYMER COATINGS FOR ICF APPLICATIONS
OAK-B135 Copper doped polymer shells can provide a very useful diagnostic for fast ignition experiments currently being performed at various laboratories around the world. The low concentration copper dopant acts as an efficient x-ray source providing information on the physics of fast ignition. They have developed copper doped glow discharge (GDP) coatings suitable for such purposes. Copper acetylacetonate (CuAcAC), a solid at room temperature, was used in a heated jacket as the dopant source. They used this technique to fabricate thin ({approx} 5-7 {micro}m) GDP shells doped with {approx} 1 at% copper through the depolymerizable mandrel process for fast ignition experiments. The details of the experimental set up and the range and limitations of the technique are discussed
Recommended from our members
COMPOSITION AND STRUCTURAL STUDIES OF STRONG GLOW DISCHARGE POLYMER COATINGS
OAK A271 COMPOSITION AND STRUCTURAL STUDIES OF STRONG GLOW DISCHARGE POLYMER COATINGS. An investigation of the chemical composition and structure of strong glow discharge (GDP) polymer shells made for cryogenic experiments at OMEGA is described. The investigation was carried out using combustion and Fourier Transform Infrared Spectroscopy (FTIR) analysis. The strongest coatings were observed to have the lowest hydrogen content or hydrogen/carbon H/C ratio, whereas the weakest coatings had the highest hydrogen content or H/C ratio. Chemical composition results from combustion were used to complement FTIR analysis to determine the relative hydrogen content of as-fabricated coatings. Good agreement was observed between composition results obtained from combustion and FTIR analysis. FTIR analysis of coating structures showed the strongest coatings to have less terminal methyl groups and a more double bond or olefinic structure. Strong GDP coatings that were aged in air react more with oxygen and moisture than standard GDP coatings. In addition to a more olefinic structure, there may also be more free-radial sites present in strong GDP coatings, which leads to greater oxygen uptake
Recent Progress in Fabrication of High-Strength Glow Discharge Polymer Shells by Optimization of Coating Parameters
OAK A271 RECENT PROGRESS IN FABRICATION OF HIGH-STRENGTH GLOW DISCHARGE POLYMER SHELLS BY OPTIMIZATION OF COATING PARAMETERS. In this paper, the authors report the progress they have made in fabrication of high-strength thin-walled glow discharge polymer (GDP) shells for cryogenic experiments at OMEGA. They have investigated a number of different parameters involved in making such shells. Optimization of hydrogen to hydrocarbon precursor flow has been observed to be critical in obtaining strong shells. They can routinely make high-strength shells of OMEGA size (900 {micro}m in diameter) with thicknesses in the range of 1.0 to 1.5 {micro}m. The permeabilities of these shells to various gases have been found to be as much as three times higher than those of lower strength shells. Run to run variability and other batch statistics are discussed
Coating and Mandrel Effects on Fabrication of Glow Discharge Polymer NIF Scale Indirect Drive Capsules
OAK A271 COATING AND MANDREL EFFECTS ON FABRICATION OF GLOW DISCHARGE POLYMER NIF SCALE INDIRECT DRIVE CAPSULES. Targets for the National Ignition Facility (NIF) need to be about 200 {micro}m thick and 2 mm in diameter. These dimensions are well beyond those currently fabricated on a routine basis. They have investigated fabrication of near NIF scale targets using the depolymerizable mandrel technique. Poly-alpha-methylstyrene (PAMS) mandrels, about 2 mm in diameter, of varying qualities were coated with as much as 125 {micro}m of glow discharge polymer (GDP). The surface finish of the final shells was examined using a variety of techniques. A clear dependence of the modal spectrum of final GDP shell on the quality of the initial PAMS mandrels was observed. isolated features were found to be the greatest cause for a shell not meeting the NIF standard
FABRICATION AND ATTACHMENT OF POLYIMIDE FILL TUBES TO PLASTIC NIF CAPSULES
We have developed a technique for drawing commercially available polyimide tubing to the required fill tube dimensions. The tubes are then precisely cut with an Excimer laser to produce a clean, flat tip. We have also demonstrated that one can use the Excimer laser to drill less than a 5 {micro}m diameter through hole in the {approx}150 wall of a NIF dimension GDP shell, and can then create a 10-15 {micro}m diameter, 20-40 {micro}m deep counterbore centered on the through hole with the same laser. Using a home built assembly station the tube is carefully inserted into the counterbore and glued in place with UV-cure epoxy, using a LED UV source to avoid heating the joint. We expect that the same joining technique can be used for Be shells
- …