3,835 research outputs found

    On The Simulated Annealing In Rd\mathbf{R}^d

    Full text link
    Using a localization procedure and the result of Holley-Kusuoka-Stroock [7] in the torus, we widely weaken the usual growth assumptions concerning the success of the continuous-time simulated annealing in Rd\mathbf{R}^d. Our only assumption is the existence of an invariant probability measure for a sufficiently low temperature. We also prove, in an appendix, a non-explosion criterion for a class of time-inhomogeneous diffusions.Comment: 22 page

    Micromechanical investigation of the influence of defects in high cycle fatigue

    Get PDF
    This study aims to analyse the influence of geometrical defects (notches and holes) on the high cycle fatigue behaviour of an electrolytic copper based on finite element simulations of 2D polycrystalline aggregates. In order to investigate the role of each source of anisotropy on the mechanical response at the grain scale, three different material constitutive models are assigned successively to the grains: isotropic elasticity, cubic elasticity and crystal plasticity in addition to the cubic elasticity. The significant influence of the elastic anisotropy on the mechanical response of the grains is highlighted. When considering smooth microstructures, the crystal plasticity have has a slight effect in comparison with the cubic elasticity influence. However, in the case of notched microstructures, it has been shown that the influence of the plasticity is no more negligible. Finally, the predictions of three fatigue criteria are analysed. Their ability to predict the defect size effect on the fatigue strength is evaluated thanks to a comparison with experimental data from the literature

    High Speed Blanking: An Experimental Method to Measure Induced Cutting Forces

    Get PDF
    Lien vers la version éditeur: http://link.springer.com/article/10.1007/s11340-013-9738-1A new blanking process that involves punch speed up to 10 ms −1 has obvious advantages in increased productivity. However, the inherent dynamics of such a process makes it difficult to develop a practical high speed punch press. The fracture phenomenon governing the blanking process has to be well understood to correctly design the machine support and the tooling. To observe this phenomenon at various controlled blanking speeds a specific experimental device has been developed. The goal is to measure accurately the shear blanking forces imposed on the specimen during blanking. In this paper a new method allowing the blanking forces to be measured and taking into account the proposed test configuration is explained. This technique has been used to determine the blanking forces experienced when forming C40 steel and quantifies the effect of process parameters such as punch die clearance, punch speed, and sheet metal thickness on the blanking force evolution

    Fingerprinting stress: stylolite and calcite twinning paleopiezometry revealing the complexity of progressive stress patterns during folding-the case of the Monte Nero anticline in the Apennines, Italy

    Get PDF
    In this study we show for the first time how quantitative stress estimates can be derived by combining calcite twinning and stylolite roughness stress fingerprinting techniques in a fold-and-thrust belt. First, we present a new method that gives access to stress inversion using tectonic stylolites without access to the stylolite surface and compare results with calcite twin inversion. Second, we use our new approach to present a high-resolution deformation and stress history that affected Meso-Cenozoic limestone strata in the Monte Nero Anticline during its late Miocene-Pliocene growth in the Umbria-Marche Arcuate Ridge (northern Apennines, Italy). In this area an extensive stylolite-joint/vein network developed during layer-parallel shortening (LPS), as well as during and after folding. Stress fingerprinting illustrates how stress in the sedimentary strata did build up prior to folding during LPS. The stress regime oscillated between strike slip and compressional during LPS before ultimately becoming strike slip again during late stage fold tightening. Our case study shows that high-resolution stress fingerprinting is possible and that this novel method can be used to unravel temporal relationships that relate to local variations of regional orogenic stresses. Beyond regional implications, this study validates our approach as a new powerful toolbox to high-resolution stress fingerprinting in basins and orogens combining joint and vein analysis with sedimentary and tectonic stylolite and calcite twin inversion techniques
    corecore