232 research outputs found
Early Post-Therapy Prescription Drug Usage among Childhood and Adolescent Cancer Survivors
Objective: To describe the patterns of prescription drug use among child and adolescent survivors of cancer in the early post-therapy period compared with matched peers without a cancer history. Study design: Using the MarketScan commercial insurance claims database, we performed a retrospective cohort study identifying survivors of pediatric (0-21 years of age at diagnosis) leukemia, lymphoma, central nervous system, bone, or gonadal cancers who completed therapy from 2000 to 2011 and remained insured for 3 years post-therapy. Prescription fills during the first 3 years post-therapy were examined, categorized by drug class, and compared with age-, sex-, and region-matched individuals without cancer. Results: We identified 1414 survivors and 14 007 comparators. Compared with those without cancer, survivors had 1.5-4.5 times greater risk for filling opioids. Survivors of leukemia, lymphoma, central nervous system, and bone cancers had 2-5 times the risk for antidepressant and 3-7 times the risk for anxiolytic use. Survivors of leukemia, lymphoma, and bone tumors had 3-13 times the risk for angiotensin-converting enzyme inhibitors by the third year post-therapy. Conclusion: Compared with peers without cancer, survivors of childhood cancer have greater rates of prescription use across many drug classes, suggesting greater medical morbidity. Survivors were more likely to use opioid, psychoactive, hormone, and cardiovascular medications. All general pediatricians and subspecialists should be aware of potentially emerging morbidities during the early post-therapy period to guide risk-based surveillance and survivorship care
Black holes, gravitational waves and fundamental physics: a roadmap
The grand challenges of contemporary fundamental physics—dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem—all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress. This write-up is an initiative taken within the framework of the European Action on 'Black holes, Gravitational waves and Fundamental Physics'
A Process for the Creation of T-MATS Propulsion System Models from NPSS Data
A modular thermodynamic simulation package called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) has been developed for the creation of dynamic simulations. The T-MATS software is designed as a plug-in for Simulink(Registered TradeMark) and allows a developer to create system simulations of thermodynamic plants (such as gas turbines) and controllers in a single tool. Creation of such simulations can be accomplished by matching data from actual systems, or by matching data from steady state models and inserting appropriate dynamics, such as the rotor and actuator dynamics for an aircraft engine. This paper summarizes the process for creating T-MATS turbo-machinery simulations using data and input files obtained from a steady state model created in the Numerical Propulsion System Simulation (NPSS). The NPSS is a thermodynamic simulation environment that is commonly used for steady state gas turbine performance analysis. Completion of all the steps involved in the process results in a good match between T-MATS and NPSS at several steady state operating points. Additionally, the T-MATS model extended to run dynamically provides the possibility of simulating and evaluating closed loop responses
Radio emission and jets from microquasars
To some extent, all Galactic binary systems hosting a compact object are
potential `microquasars', so much as all galactic nuclei may have been quasars,
once upon a time. The necessary ingredients for a compact object of stellar
mass to qualify as a microquasar seem to be: accretion, rotation and magnetic
field. The presence of a black hole may help, but is not strictly required,
since neutron star X-ray binaries and dwarf novae can be powerful jet sources
as well. The above issues are broadly discussed throughout this Chapter, with a
a rather trivial question in mind: why do we care? In other words: are jets a
negligible phenomenon in terms of accretion power, or do they contribute
significantly to dissipating gravitational potential energy? How do they
influence their surroundings? The latter point is especially relevant in a
broader context, as there is mounting evidence that outflows powered by
super-massive black holes in external galaxies may play a crucial role in
regulating the evolution of cosmic structures. Microquasars can also be thought
of as a form of quasars for the impatient: what makes them appealing, despite
their low number statistics with respect to quasars, are the fast variability
time-scales. In the first approximation, the physics of the jet-accretion
coupling in the innermost regions should be set by the mass/size of the
accretor: stellar mass objects vary on 10^5-10^8 times shorter time-scales,
making it possible to study variable accretion modes and related ejection
phenomena over average Ph.D. time-scales. [Abridged]Comment: 28 pages, 13 figures, To appear in Belloni, T. (ed.): The Jet
Paradigm - From Microquasars to Quasars, Lect. Notes Phys. 794 (2009
Developing a predictive modelling capacity for a climate change-vulnerable blanket bog habitat: Assessing 1961-1990 baseline relationships
Aim: Understanding the spatial distribution of high priority habitats and
developing predictive models using climate and environmental variables to
replicate these distributions are desirable conservation goals. The aim of this
study was to model and elucidate the contributions of climate and topography to
the distribution of a priority blanket bog habitat in Ireland, and to examine how
this might inform the development of a climate change predictive capacity for
peat-lands in Ireland.
Methods: Ten climatic and two topographic variables were recorded for grid
cells with a spatial resolution of 1010 km, covering 87% of the mainland
land surface of Ireland. Presence-absence data were matched to these variables
and generalised linear models (GLMs) fitted to identify the main climatic and
terrain predictor variables for occurrence of the habitat. Candidate predictor
variables were screened for collinearity, and the accuracy of the final fitted GLM
was evaluated using fourfold cross-validation based on the area under the curve
(AUC) derived from a receiver operating characteristic (ROC) plot. The GLM
predicted habitat occurrence probability maps were mapped against the actual
distributions using GIS techniques.
Results: Despite the apparent parsimony of the initial GLM using only climatic
variables, further testing indicated collinearity among temperature and precipitation
variables for example. Subsequent elimination of the collinear variables and
inclusion of elevation data produced an excellent performance based on the AUC
scores of the final GLM. Mean annual temperature and total mean annual
precipitation in combination with elevation range were the most powerful
explanatory variable group among those explored for the presence of blanket
bog habitat.
Main conclusions: The results confirm that this habitat distribution in general
can be modelled well using the non-collinear climatic and terrain variables tested
at the grid resolution used. Mapping the GLM-predicted distribution to the
observed distribution produced useful results in replicating the projected
occurrence of the habitat distribution over an extensive area. The methods
developed will usefully inform future climate change predictive modelling for
Irelan
Global research priorities for sea turtles : informing management and conservation in the 21st century
Over the past 3 decades, the status of sea turtles and the need for their protection to aid population recovery have increasingly captured the interest of government agencies, non-governmental organisations (NGOs) and the general public worldwide. This interest has been matched by increased research attention, focusing on a wide variety of topics relating to sea turtle biology and ecology, together with the interrelations of sea turtles with the physical and natural environments. Although sea turtles have been better studied than most other marine fauna, management actions and their evaluation are often hindered by the lack of data on turtle biology, human–turtle interactions, turtle population status and threats. In an effort to inform effective sea turtle conservation a list of priority research questions was assembled based on the opinions of 35 sea turtle researchers from 13 nations working in fields related to turtle biology and/or conservation. The combined experience of the contributing researchers spanned the globe as well as many relevant disciplines involved in conservation research. An initial list of more than 200 questions gathered from respondents was condensed into 20 metaquestions and classified under 5 categories: reproductive biology, biogeography, population ecology, threats and conservation strategies
Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020
We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe
Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)
[no abstract available
Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model
We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society
Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background
The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society
- …