5,088 research outputs found
Galactic extinction and Abell clusters
In this paper, we present the results of comparing the angular distribution
of Abell clusters with Galactic HI measurements. For most subsamples of
clusters considered, their positions on the sky appear to be anti-correlated
with respect to the distribution of HI column densities. The statistical
significance of these observed anti-correlations is a function of both richness
and distance class, with the more distant and/or richest systems having the
highest significance (~3 sigma). The lower richness, nearby clusters appear to
be randomly distributed compared to the observed Galactic HI column density.Comment: 5 pages, uuencoded compressed postscript file. Figures included.
Accepted by MNRA
Acoustic Oscillations in the Early Universe and Today
During its first ~100,000 years, the universe was a fully ionized plasma with
a tight coupling by Thompson scattering between the photons and matter. The
trade--off between gravitational collapse and photon pressure causes acoustic
oscillations in this primordial fluid. These oscillations will leave
predictable imprints in the spectra of the cosmic microwave background and the
present day matter-density distribution. Recently, the BOOMERANG and MAXIMA
teams announced the detection of these acoustic oscillations in the cosmic
microwave background (observed at redshift ~1000). Here, we compare these CMB
detections with the corresponding acoustic oscillations in the matter-density
power spectrum (observed at redshift ~0.1). These consistent results, from two
different cosmological epochs, provide further support for our standard Hot Big
Bang model of the universe.Comment: To appear in the journal Science. 6 pages, 1 color figur
The Interplay of Cluster and Galaxy Evolution
We review here the interplay of cluster and galaxy evolution. As a case
study, we consider the Butcher-Oemler effect and propose that it is the result
of the changing rate of cluster merger events in a hierarchical universe. This
case study highlights the need for new catalogs of clusters and groups that
possess quantified morphologies. We present such a sample here, namely the
Sloan Digital Sky Survey (SDSS) C4 Catalog, which has been objectively-selected
from the SDSS spectroscopic galaxy sample. We outline here the C4 algorithm and
present first results based on the SDSS Early Data Release, including an X-ray
luminosity-velocity dispersion (L_x-sigma) scaling relationship (as a function
of cluster morphology), and the density-SFR relation of galaxies within C4
clusters (Gomez et al. 2003). We also discuss the merger of Coma and the
NGC4839 group, and its effect on the galaxy populations in these systems. We
finish with a brief discussion of a new sample of Hdelta-selected galaxies
(i.e., k+a, post--starburst galaxies) obtained from the SDSS spectroscopic
survey.Comment: Invited review at the JENAM 2002 Workshop on "Galaxy Evolution in
Groups and Clusters", Porto, Sep 5-7 2002, eds. Lobo, Serote-Roos and
Biviano, Kluwer in pres
The significance of the integrated Sachs-Wolfe effect revisited
We revisit the state of the integrated Sachs-Wolfe (ISW) effect measurements
in light of newly available data and address criticisms about the measurements
which have recently been raised. We update the data set previously assembled by
Giannantonio et al. to include new data releases for both the cosmic microwave
background (CMB) and the large-scale structure (LSS) of the Universe. We find
that our updated results are consistent with previous measurements. By fitting
a single template amplitude, we now obtain a combined significance of the ISW
detection at the 4.4 sigma level, which fluctuates by 0.4 sigma when
alternative data cuts and analysis assumptions are considered. We also make new
tests for systematic contaminations of the data, focusing in particular on the
issues raised by Sawangwit et al. Amongst them, we address the rotation test,
which aims at checking for possible systematics by correlating pairs of
randomly rotated maps. We find results consistent with the expected data
covariance, no evidence for enhanced correlation on any preferred axis of
rotation, and therefore no indication of any additional systematic
contamination. We publicly release the results, the covariance matrix, and the
sky maps used to obtain them.Comment: 19 pages, 10 figures. MNRAS in pres
A Bayesian Inference Analysis of the X-ray Cluster Luminosity-Temperature Relation
We present a Bayesian inference analysis of the Markevitch (1998) and Allen &
Fabian (1998) cooling flow corrected X-ray cluster temperature catalogs that
constrains the slope and the evolution of the empirical X-ray cluster
luminosity-temperature (L-T) relation. We find that for the luminosity range
10^44.5 erg s^-1 < L_bol < 10^46.5 erg s^-1 and the redshift range z < 0.5,
L_bol is proportional to T^2.80(+0.15/-0.15)(1+z)^(0.91-1.12q_0)(+0.54/-1.22).
We also determine the L-T relation that one should use when fitting the Press-
Schechter mass function to X-ray cluster luminosity catalogs such as the
Einstein Medium Sensitivity Survey (EMSS) and the Southern Serendipitous High-
Redshift Archival ROSAT Catalog (Southern SHARC), for which cooling flow
corrected luminosities are not determined and a universal X-ray cluster
temperature of T = 6 keV is assumed. In this case, L_bol is proportional to
T^2.65(+0.23/-0.20)(1+z)^(0.42-1.26q_0)(+0.75/-0.83) for the same luminosity
and redshift ranges.Comment: Accepted to The Astrophysical Journal, 20 pages, LaTe
Detecting the Baryons in Matter Power Spectra
We examine power spectra from the Abell/ACO rich cluster survey and the 2dF
Galaxy Redshift Survey (2dfGRS) for observational evidence of features produced
by the baryons. A non-negligible baryon fraction produces relatively sharp
oscillatory features at specific wavenumbers in the matter power spectrum.
However, the mere existence of baryons will also produce a global suppression
of the power spectrum. We look for both of these features using the false
discovery rate (FDR) statistic. We show that the window effects on the
Abell/ACO power spectrum are minimal, which has allowed for the discovery of
discrete oscillatory features in the power spectrum. On the other hand, there
are no statistically significant oscillatory features in the 2dFGRS power
spectrum, which is expected from the survey's broad window function. After
accounting for window effects, we apply a scale-independent bias to the 2dFGRS
power spectrum, P_{Abell}(k) = b^2P_{2dF}(k) and b = 3.2. We find that the
overall shapes of the Abell/ACO and the biased 2dFGRS power spectra are
entirely consistent over the range 0.02 <= k <= 0.15hMpc^-1. We examine the
range of Omega_{matter} and baryon fraction for which these surveys could
detect significant suppression in power. The reported baryon fractions for both
the Abell/ACO and 2dFGRS surveys are high enough to cause a detectable
suppression in power (after accounting for errors, windows and k-space
sampling). Using the same technique, we also examine, given the best fit baryon
density obtained from BBN, whether it is possible to detect additional
suppression due to dark matter-baryon interaction. We find that the limit on
dark matter cross section/mass derived from these surveys are the same as those
ruled out in a recent study by Chen, Hannestad and Scherrer.Comment: 11 pages of text, 6 figures. Submitted to Ap
- …