1,516 research outputs found

    Soybean \u3ci\u3eGm\u3c/i\u3eSAUL1, a Bona Fide U-Box E3 Ligase, Negatively Regulates Immunity Likely through Repressing the Activation of \u3ci\u3eGm\u3c/i\u3eMPK3

    Get PDF
    E3 ubiquitin ligases play important roles in plant immunity, but their role in soybean has not been investigated previously. Here, we used Bean pod mottle virus (BPMV)-mediated virusinduced gene silencing (VIGS) to investigate the function of GmSAUL1 (Senescence-Associated E3 Ubiquitin Ligase 1) homologs in soybean. When two closely related SAUL1 homologs were silenced simultaneously, the soybean plants displayed autoimmune phenotypes, which were significantly alleviated by high temperature, suggesting that GmSAUL1a/1b might be guarded by an R protein. Interestingly, silencing GmSAUL1a/1b resulted in the decreased activation of GmMPK6, but increased activation of GmMPK3 in response to flg22, suggesting that the activation of GmMPK3 is most likely responsible for the activated immunity observed in the GmSAUL1a/1b-silenced plants. Furthermore, we provided evidence that GmSAUL1a is a bona fide E3 ligase. Collectively, our results indicated that GmSAUL1 plays a negative role in regulating cell death and immunity in soybean

    Loss of COPZ1 induces NCOA4 mediated autophagy and ferroptosis in glioblastoma cell lines

    Get PDF
    Dysregulated iron metabolism is a hallmark of many cancers, including glioblastoma (GBM). However, its role in tumor progression remains unclear. Herein, we identified coatomer protein complex subunit zeta 1 (COPZ1) as a therapeutic target candidate which significantly dysregulated iron metabolism in GBM cells. Overexpression of COPZ1 was associated with increasing tumor grade and poor prognosis in glioma patients based on analysis of expression data from the publicly available database The Cancer Genome Atlas (P < 0.001). Protein levels of COPZ1 were significantly increased in GBM compared to non-neoplastic brain tissue samples in immunohistochemistry and western blot analysis. SiRNA knockdown of COPZ1 suppressed proliferation of U87MG, U251 and P3#GBM in vitro. Stable expression of a COPZ1 shRNA construct in U87MG inhibited tumor growth in vivo by ~60% relative to controls at day 21 after implantation (P < 0.001). Kaplan–Meier analysis of the survival data demonstrated that the overall survival of tumor bearing animals increased from 20.8 days (control) to 27.8 days (knockdown, P < 0.05). COPZ1 knockdown also led to the increase in nuclear receptor coactivator 4 (NCOA4), resulting in the degradation of ferritin, and a subsequent increase in the intracellular levels of ferrous iron and ultimately ferroptosis. These data demonstrate that COPZ1 is a critical mediator in iron metabolism. The COPZ1/NCOA4/FTH1 axis is therefore a novel therapeutic target for the treatment of human GBM.publishedVersio

    Anti-inflammatory effect of Yu-Ping-Feng-San via TGF-β1 signaling suppression in rat model of COPD

    Get PDF
    Objective(s): Yu-Ping-Feng-San (YPFS) is a classical traditional Chinese medicine that is widely used for treatment of the diseases in respiratory systems, including chronic obstructive pulmonary disease (COPD) recognized as chronic inflammatory disease. However, the molecular mechanism remains unclear. Here we detected the factors involved in transforming growth factor beta 1 (TGF-β1)/Smad2 signaling pathway and inflammatory cytokines, to clarify whether YPFS could attenuate inflammatory response dependent on TGF-β1/Smad2 signaling in COPD rats or cigarette smoke extract (CSE)-treated human bronchial epithelial (Beas-2B) cells.  Materials and Methods: The COPD rat model was established by exposure to cigarette smoke and intratracheal instillation of lipopolysaccharide, YPFS was administered to the animals. The efficacy of YPFS was evaluated by comparing the severity of pulmonary pathological damage, pro-inflammation cytokines, collagen related genes and the activation of TGF-β1/Smad2 signaling pathway. Furthermore, CSE-treated cells were employed to confirm whether the effect of YPFS was dependent on the TGF-β1/Smad2 signaling via knockdown Smad2 (Si-RNA), or pretreatment with the inhibitor of TGF-β1. Results: Administration of YPFS effectively alleviated injury of lung, suppressed releasing of pro-inflammatory cytokines and collagen deposition in COPD animals (

    Selection of Pru p 3 hypoallergenic peach and nectarine varieties

    Get PDF
    To the Editor, Peach is an important fruit consumed worldwide. However, it is also one of the most frequently reported allergenic fruits.1 Component diagnosis of peach allergy indicates Pru p 1, Pru p 2, Pru p 3, Pru p 4, Pru p 7, and Pru p 9 are involved.2, 3 Pru p 3 is the dominant allergen responsible for severe allergic reaction,4 and it is considered to be the primary sensitizer to other LTPs in Mediterranean and Central Europe.5 The levels of Pru p 3 differ between varieties.6 To date, measurement of Pru p 3 in a limited number of peach and nectarines from Spain, United States, and Italy has been reported.7 Significant variation of allergen concentration in processed foods containing peach has also been observed.8 The content of Pru p 3 of peach/nectarine determines the potential risk for peach allergic patients. China is the origin of peach with representative genetic diversity to be explored for hypoallergenic varieties.9 A core collection of 103 varieties cultivated in Jiaxing, Zhejiang Province were selected to represent this diversity, including 23 nectarines and 80 peach varieties (with fruit hair, round or flat, 77 cultivated, three wild) (Table S1). The soluble solid content (SSC), ripening date, and peach aroma intensity were recorded. Specific methods are detailed in the Supporting Information. Pru p 3 was quantified by ELISA based on our previous research.6info:eu-repo/semantics/publishedVersio
    corecore