6 research outputs found

    Magnetic helicity fluxes in an alpha-squared dynamo embedded in a halo

    Full text link
    We present the results of simulations of forced turbulence in a slab where the mean kinetic helicity has a maximum near the mid-plane, generating gradients of magnetic helicity of both large and small-scale fields. We also study systems that have poorly conducting buffer zones away from the midplane in order to assess the effects of boundaries. The dynamical alpha quenching phenomenology requires that the magnetic helicity in the small-scale fields approaches a nearly static, gauge independent state. To stress-test this steady state condition we choose a system with a uniform sign of kinetic helicity, so that the total magnetic helicity can reach a steady state value only through fluxes through the boundary, which are themselves suppressed by the velocity boundary conditions. Even with such a set up, the small-scale magnetic helicity is found to reach a steady state. In agreement with earlier work, the magnetic helicity fluxes of small-scale fields are found to be turbulently diffusive. By comparing results with and without halos, we show that artificial constraints on magnetic helicity at the boundary do not have a significant impact on the evolution of the magnetic helicity, except that "softer" (halo) boundary conditions give a lower energy of the saturated mean magnetic field.Comment: 12 pages, 5 figures, submitted to GAF

    The mean electro-motive force, current- and cross-helicity under the influence of rotation, magnetic field and shear

    Full text link
    The mean electromotive force (MEMF) in a rotating stratified magnetohydrodynamical turbulence is studied.Our study rests on the mean-field magnetohydrodynamics framework and τ\tau approximation. We compute the effects of the large-scale magnetic fields (LSMF), global rotation and large-scale shear flow on the different parts of the MEMF (such as α\alpha - effect, turbulent diffusion, turbulent transport, etc.) in an explicit form. The influence of the helical magnetic fluctuations which stem from the small-scale dynamo is taken into account, as well. In the paper, we derive the equation governing the current helicity evolution. It is shown that the joint effect of the differential rotation and magnetic fluctuations in the stratified media can be responsible for the generation, maintenance and redistribution of the current helicity. The implication of the obtained results to astrophysical dynamos is considered as well.Comment: 27 pages, 8 figures, submitted to GAF

    Chandrasekhar-Kendall functions in astrophysical dynamos

    Full text link
    Some of the contributions of Chandrasekhar to the field of magnetohydrodynamics are highlighted. Particular emphasis is placed on the Chandrasekhar-Kendall functions that allow a decomposition of a vector field into right- and left-handed contributions. Magnetic energy spectra of both contributions are shown for a new set of helically forced simulations at resolutions higher than what has been available so far. For a forcing function with positive helicity, these simulations show a forward cascade of the right-handed contributions to the magnetic field and nonlocal inverse transfer for the left-handed contributions. The speed of inverse transfer is shown to decrease with increasing value of the magnetic Reynolds number.Comment: 10 pages, 5 figures, proceedings of the Chandrasekhar Centenary Conference, to be published in PRAMANA - Journal of Physic

    MHD simulations of small and large scale dynamos

    No full text
    Isotropic homogeneous hydromagnetic turbulence is studied using numerical simulations at resolutions of up to 1024^3 meshpoints. It is argued that, in contrast to the kinematic regime, the nonlinear regime is characterized by a spectral magnetic power that is decreasing with increasing wavenumber, regardless of whether or not the turbulence has helicity. This means that the root-mean-square field strength converges to a limiting value at large magnetic Reynolds numbers. The total (magnetic and kinetic) energy spectrum tends to be somewhat shallower than k^{-5/3}, in agreement with the findings of other groups. In the presence of helicity, an inverse cascade develops, provided the scale separation between the size of the computational box and the scale of the energy carrying eddies exceeds a ratio of at least two. Finally, the constraints imposed by magnetic helicity conservation on mean-field theory are reviewed and new results of simulations are presented

    Astrophysical Cosmology

    No full text
    corecore