598 research outputs found

    Cove‐Edged Nanographenes with Localized Double Bonds

    Get PDF
    The efficient synthesis and electronic properties of two large‐size cove‐edged nanographenes (NGs), CN1 and CN2, are presented. X‐ray crystallographic analysis reveals a contorted backbone for both molecules owing to the steric repulsion at the inner cove position. Noticeably, the dominant structures of these molecules contain four (for CN1) or six (for CN2) localized C=C double bonds embedded in nine (for CN1) or twelve (for CN2) aromatic sextet rings according to Clar's formula, which is supported by bond length analysis and theoretical (NICS, ACID) calculations. Furthermore, Raman spectra exhibit a band associated with the longitudinal CC stretching mode of olefinic double bonds. Owing to the existence of the additional olefinic bonds, both compounds show a small band gap (1.84 eV for CN1 and 1.37 eV for CN2). They also display moderate fluorescence quantum yield (35 % for CN1 and 50 % for CN2) owing to the contorted geometry, which can suppress aggregation in solution.J.W. acknowleges financial support from the MOE Tier 3 programme (MOE2014-T3-1-004) and NRF Investigatorship (NRF-NRFI05-2019-0005). J.C. acknowledges MINECO and Junta de Andalucía of Spain projects (PGC2018-098533-BI00 and UMA18FEDERJA057). M.A.D.-G. and R.M.-M. thank support from MINECO through the research project MAT2015-66586-R and the FPI fellowship (no. BES-2016-077681), respectively

    Extended Fermi coordinates

    Full text link
    We extend the notion of Fermi coordinates to a generalized definition in which the highest orders are described by arbitrary functions. From this definition rises a formalism that naturally gives coordinate transformation formulae. Some examples are developped in which the extended Fermi coordinates simplify the metric components.Comment: 16 pages, 1 figur

    Brain regions that process case: Evidence from basque

    Get PDF
    The aim of this event-related fMRI study was to investigate the cortical networks involved in case processing, an operation that is crucial to language comprehension yet whose neural underpinnings are not well-understood. What is the relationship of these networks to those that serve other aspects of syntactic and semantic processing? Participants read Basque sentences that contained case violations, number agreement violations or semantic anomalies, or that were both syntactically and semantically correct. Case violations elicited activity increases, compared to correct control sentences, in a set of parietal regions including the posterior cingulate, the precuneus, and the left and right inferior parietal lobules. Number agreement violations also elicited activity increases in left and right inferior parietal regions, and additional activations in the left and right middle frontal gyrus. Regions-of-interest analyses showed that almost all of the clusters that were responsive to case or number agreement violations did not differentiate between these two. In contrast, the left and right anterior inferior frontal gyrus and the dorsomedial prefrontal cortex were only sensitive to semantic violations. Our results suggest that whereas syntactic and semantic anomalies clearly recruit distinct neural circuits, case, and number violations recruit largely overlapping neural circuits and that the distinction between the two rests on the relative contributions of parietal and prefrontal regions, respectively. Furthermore, our results are consistent with recently reported contributions of bilateral parietal and dorsolateral brain regions to syntactic processing, pointing towards potential extensions of current neurocognitive theories of language. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc

    Enhancing the sensitivity of magnetic sensors by 3D metamaterial shells

    Get PDF
    Magnetic sensors are key elements in our interconnected smart society. Their sensitivity becomes essential for many applications in fields such as biomedicine, computer memories, geophysics, or space exploration. Here we present a universal way of increasing the sensitivity of magnetic sensors by surrounding them with a spherical metamaterial shell with specially designed anisotropic magnetic properties. We analytically demonstrate that the magnetic field in the sensing area is enhanced by our metamaterial shell by a known factor that depends on the shell radii ratio. When the applied field is non-uniform, as for dipolar magnetic field sources, field gradient is increased as well. A proof-of-concept experimental realization confirms the theoretical predictions. The metamaterial shell is also shown to concentrate time-dependent magnetic fields upto frequencies of 100 kHz

    Retrospective analysis of nosocomial infections in the intensive care unit of a tertiary hospital in China during 2003 and 2007

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nosocomial infections are a major threat to patients in the intensive care unit (ICU). Limited data exist on the epidemiology of ICU-acquired infections in China. This retrospective study was carried out to determine the current status of nosocomial infection in China.</p> <p>Methods</p> <p>A retrospective review of nococomial infections in the ICU of a tertiary hospital in East China between 2003 and 2007 was performed. Nosocomial infections were defined according to the definitions of Centers for Disease Control and Prevention. The overall patient nosocomial infection rate, the incidence density rate of nosocomial infections, the excess length of stay, and distribution of nosocomial infection sites were determined. Then, pathogen and antimicrobial susceptibility profiles were further investigated.</p> <p>Results</p> <p>Among 1980 patients admitted over the period of time, the overall patient nosocomial infection rate was 26.8% or 51.0 per 1000 patient days., Lower respiratory tract infections (LRTI) accounted for most of the infections (68.4%), followed by urinary tract infections (UTI, 15.9%), bloodstream (BSI, 5.9%), and gastrointestinal tract (GI, 2.5%) infections. There was no significant change in LRTI, UTI and BSI infection rates during the 5 years. However, GI rate was significantly decreased from 5.5% in 2003 to 0.4% in 2007. In addition, <it>A. baumannii, C. albicans </it>and <it>S. epidermidis </it>were the most frequent pathogens isolated in patients with LRTIs, UTIs and BSIs, respectively. The rates of isolates resistant to commonly used antibiotics ranged from 24.0% to 93.1%.</p> <p>Conclusion</p> <p>There was a high and relatively stable rate of nosocomial infections in the ICU of a tertiary hospital in China through year 2003–2007, with some differences in the distribution of the infection sites, and pathogen and antibiotic susceptibility profiles from those reported from the Western countries. Guidelines for surveillance and prevention of nosocomial infections must be implemented in order to reduce the rate.</p

    Highly-dispersed nickel nanoparticles decorated titanium dioxide nanotube array for enhanced solar light absorption

    Get PDF
    Honeycomb titanium dioxide nanotube array (TiO2-NTA) decorated by highly-dispersed nickel nanoparticles (Ni-NPs) has been grown under control on Ti foil by anodization and subsequent electrodeposition. The pore diameter and length of TiO2-NTA, and the size and quantity of Ni-NPs can be controlled via modulating the variables of the electrochemical processes. It has been found that the pretreatment of TiO2-NTA in the Cu(NO3)2 solution and further annealing at 450 °C in air could greatly improve the dispersion of the electrodeposited Ni-NPs. Absorption of the light in the solar spectrum from 300 to 2500 nm by the Ni-NPs@TiO2-NTA is as high as 96.83%, thanks to the co-effect of the light-trapping of TiO2-NTA and the plasmonic resonance of Ni-NPs. In the water heating experiment performed under an illuminating solar power density of ∼1 kW m−2 (AM 1.5), the ultimate temperature over 66 °C and an overall efficiency of 78.9% within 30 min were obtained, promising for applications in photothermal conversion and solar energy harvest

    A novel model for hourly PM2.5 concentration prediction based on CART and EELM

    Get PDF
    Hourly PM2.5 concentrations have multiple change patterns. For hourly PM2.5 concentration prediction, it is beneficial to split the whole dataset into several subsets with similar properties and to train a local prediction model for each subset. However, the methods based on local models need to solve the global-local duality. In this study, a novel prediction model based on classification and regression tree (CART) and ensemble extreme learning machine (EELM) methods is developed to split the dataset into subsets in a hierarchical fashion and build a prediction model for each leaf. Firstly, CART is used to split the dataset by constructing a shallow hierarchical regression tree. Then at each node of the tree, EELM models are built using the training samples of the node, and hidden neuron numbers are selected to minimize validation errors respectively on the leaves of a sub-tree that takes the node as the root. Finally, for each leaf of the tree, a global and several local EELMs on the path from the root to the leaf are compared, and the one with the smallest validation error on the leaf is chosen. The meteorological data of Yancheng urban area and the air pollutant concentration data from City Monitoring Centre are used to evaluate the method developed. The experimental results demonstrate that the method developed addresses the global-local duality, having better performance than global models including random forest (RF), v-support vector regression (v-SVR) and EELM, and other local models based on season and k-means clustering. The new model has improved the capability of treating multiple change patterns

    Probiotics, gut microbiota and their influence on host health and disease

    Get PDF
    The gastrointestinal tract (GIT) of mammals hosts a high and diverse number of different microorganisms, known as intestinal microbiota. Many probiotics were originally isolated from the GIT, and they were defined by the FAO/WHO as live microorganisms which when administered in adequate amounts confer a health benefit on the host. Probiotics exert their beneficial effects on the host through four main mechanisms: interference with potential pathogens, improvement of barrier function, immunomodulation and production of neurotransmitters, and their host targets vary from the resident microbiota to cellular components of the gut-brain axis. However, in spite of the wide array of beneficial mechanisms deployed by probiotic bacteria, relatively few effects have been supported by clinical data. In this regard, different probiotic strains have been effective in Antibiotic-Associated Diarrhea or Inflammatory Bowel Disease for instance. The aim of this review was to compile the molecular mechanisms underlying the beneficial effects of probiotics, mainly through their interaction with the intestinal microbiota and with the intestinal mucosa. The specific benefits discuss in this paper include among others those elicited directly through dietary modulation of the human gut microbiota.This article is protected by copyright. All rights reservedResearch in our lab is funded by Grants AGL2013-44039R and AGL2013-44761-P from the Spanish “Plan Estatal de I+D+I.” Part of the authors is also partially funded by the [15VI013] Contract-Programme from the University of Vigo and the Agrupamento INBIOMED from DXPCTSUG-FEDER unha maneira de facer Europa (2012/273). B. S. was recipient of a Ramón y Cajal postdoctoral contract from the Spanish Ministry of Economy and Competitiveness

    Novel transcripts reveal a complex structure of the human TRKA gene and imply the presence of multiple protein isoforms

    Get PDF
    Publisher Copyright: © 2015 Luberg et al.Background: Tropomyosin-related kinase A (TRKA) is a nerve growth factor (NGF) receptor that belongs to the tyrosine kinase receptor family. It is critical for the correct development of many types of neurons including pain-mediating sensory neurons and also controls proliferation, differentiation and survival of many neuronal and non-neuronal cells. TRKA (also known as NTRK1) gene is a target of alternative splicing which can result in several different protein isoforms. Presently, three human isoforms (TRKAI, TRKAII and TRKAIII) and two rat isoforms (TRKA L0 and TRKA L1) have been described. Results: We show here that human TRKA gene is overlapped by two genes and spans 67 kb-almost three times the size that has been previously described. Numerous transcription initiation sites from eight different 5' exons and a sophisticated splicing pattern among exons encoding the extracellular part of TRKA receptor indicate that there might be a large variety of alternative protein isoforms. TrkA genes in rat and mouse appear to be considerably shorter, are not overlapped by other genes and display more straightforward splicing patterns. We describe the expression profile of alternatively spliced TRKA transcripts in different tissues of human, rat and mouse, as well as analyze putative endogenous TRKA protein isoforms in human SH-SY5Y and rat PC12 cells. We also characterize a selection of novel putative protein isoforms by portraying their phosphorylation, glycosylation and intracellular localization patterns. Our findings show that an isoform comprising mainly of TRKA kinase domain is capable of entering the nucleus. Conclusions: Results obtained in this study refer to the existence of a multitude of TRKA mRNA and protein isoforms, with some putative proteins possessing very distinct properties.publishersversionPeer reviewe

    Turtle Carapace Anomalies: The Roles of Genetic Diversity and Environment

    Get PDF
    Background: Phenotypic anomalies are common in wild populations and multiple genetic, biotic and abiotic factors might contribute to their formation. Turtles are excellent models for the study of developmental instability because anomalies are easily detected in the form of malformations, additions, or reductions in the number of scutes or scales. Methodology/Principal Findings: In this study, we integrated field observations, manipulative experiments, and climatic and genetic approaches to investigate the origin of carapace scute anomalies across Iberian populations of the European pond turtle, Emys orbicularis. The proportion of anomalous individuals varied from 3 % to 69 % in local populations, with increasing frequency of anomalies in northern regions. We found no significant effect of climatic and soil moisture, or climatic temperature on the occurrence of anomalies. However, lower genetic diversity and inbreeding were good predictors of the prevalence of scute anomalies among populations. Both decreasing genetic diversity and increasing proportion of anomalous individuals in northern parts of the Iberian distribution may be linked to recolonization events from the Southern Pleistocene refugium. Conclusions/Significance: Overall, our results suggest that developmental instability in turtle carapace formation might be caused, at least in part, by genetic factors, although the influence of environmental factors affecting the developmental stability of turtle carapace cannot be ruled out. Further studies of the effects of environmental factors, pollutants an
    corecore