109 research outputs found
Receptor Tyrosine Kinase (RTK) Mediated Tyrosine Phosphor-Proteome from Drosophila S2 (ErbB1) Cells Reveals Novel Signaling Networks
Protein phosphorylation mediates many critical cellular responses and is essential for many biological functions during development. About one-third of cellular proteins are phosphorylated, representing the phosphor-proteome, and phosphorylation can alter a protein's function, activity, localization and stability. Tyrosine phosphorylation events mediated by aberrant activation of Receptor Tyrosine Kinase (RTK) pathways have been proven to be involved in the development of several diseases including cancer. To understand the systems biology of RTK activation, we have developed a phosphor-proteome focused on tyrosine phosphorylation events under insulin and EGF signaling pathways using the PhosphoScan® technique coupled with high-throughput mass spectrometry analysis. Comparative proteomic analyses of all these tyrosine phosphorylation events revealed that around 70% of these pY events are conserved in human orthologs and paralogs. A careful analysis of published in vivo tyrosine phosphorylation events from literature and patents revealed that around 38% of pY events from Drosophila proteins conserved on 185 human proteins are confirmed in vivo tyrosine phosphorylation events. Hence the data are validated partially based on available reports, and the credibility of the remaining 62% of novel conserved sites that are unpublished so far is very high but requires further follow-up studies. The novel pY events found in this study that are conserved on human proteins could potentially lead to the discovery of drug targets and biomarkers for the detection of various cancers and neurodegenerative diseases
Tipping points in the dynamics of speciation.
Speciation can be gradual or sudden and involve few or many genetic changes. Inferring the processes generating such patterns is difficult, and may require consideration of emergent and non-linear properties of speciation, such as when small changes at tipping points have large effects on differentiation. Tipping points involve positive feedback and indirect selection stemming from associations between genomic regions, bi-stability due to effects of initial conditions and evolutionary history, and dependence on modularity of system components. These features are associated with sudden 'regime shifts' in other cellular, ecological, and societal systems. Thus, tools used to understand other complex systems could be fruitfully applied in speciation research
Accelerated Evolution of the Prdm9 Speciation Gene across Diverse Metazoan Taxa
The onset of prezygotic and postzygotic barriers to gene flow between populations is a hallmark of speciation. One of the earliest postzygotic isolating barriers to arise between incipient species is the sterility of the heterogametic sex in interspecies' hybrids. Four genes that underlie hybrid sterility have been identified in animals: Odysseus, JYalpha, and Overdrive in Drosophila and Prdm9 (Meisetz) in mice. Mouse Prdm9 encodes a protein with a KRAB motif, a histone methyltransferase domain and several zinc fingers. The difference of a single zinc finger distinguishes Prdm9 alleles that cause hybrid sterility from those that do not. We find that concerted evolution and positive selection have rapidly altered the number and sequence of Prdm9 zinc fingers across 13 rodent genomes. The patterns of positive selection in Prdm9 zinc fingers imply that rapid evolution has acted on the interface between the Prdm9 protein and the DNA sequences to which it binds. Similar patterns are apparent for Prdm9 zinc fingers for diverse metazoans, including primates. Indeed, allelic variation at the DNA–binding positions of human PRDM9 zinc fingers show significant association with decreased risk of infertility. Prdm9 thus plays a role in determining male sterility both between species (mouse) and within species (human). The recurrent episodes of positive selection acting on Prdm9 suggest that the DNA sequences to which it binds must also be evolving rapidly. Our findings do not identify the nature of the underlying DNA sequences, but argue against the proposed role of Prdm9 as an essential transcription factor in mouse meiosis. We propose a hypothetical model in which incompatibilities between Prdm9-binding specificity and satellite DNAs provide the molecular basis for Prdm9-mediated hybrid sterility. We suggest that Prdm9 should be investigated as a candidate gene in other instances of hybrid sterility in metazoans
Ustekinumab as Induction and Maintenance Therapy for Crohn’s Disease
BACKGROUND
Ustekinumab, a monoclonal antibody to the p40 subunit of interleukin-12 and inter-leukin-23, was evaluated as an intravenous induction therapy in two populations with moderately to severely active Crohn’s disease. Ustekinumab was also evaluated as subcutaneous maintenance therapy.
METHODS
We randomly assigned patients to receive a single intravenous dose of ustekinumab (either 130 mg or approximately 6 mg per kilogram of body weight) or placebo in two induction trials. The UNITI-1 trial included 741 patients who met the criteria for primary or secondary nonresponse to tumor necrosis factor (TNF) antagonists or had unacceptable side effects. The UNITI-2 trial included 628 patients in whom conventional therapy failed or unacceptable side effects occurred. Patients who completed
these induction trials then participated in IM-UNITI, in which the 397 patients who had a response to ustekinumab were randomly assigned to receive subcutaneous maintenance injections of 90 mg of ustekinumab (either every 8 weeks or every 12 weeks) or placebo. The primary end point for the induction trials was a clinical response at week 6 (defined as a decrease from baseline in the Crohn’s Disease Activity Index [CDAI] score of ≥100 points or a CDAI score <150). The primary end point for the maintenance trial was remission at week 44 (CDAI score <150).
RESULTS
The rates of response at week 6 among patients receiving intravenous ustekinumab at a dose of either 130 mg or approximately 6 mg per kilogram were significantly higher
than the rates among patients receiving placebo (in UNITI-1, 34.3%, 33.7%, and 21.5%, respectively, with P≤0.003 for both comparisons with placebo; in UNITI-2, 51.7%, 55.5%, and 28.7%, respectively, with P<0.001 for both doses). In the groups receiving maintenance doses of ustekinumab every 8 weeks or every 12 weeks, 53.1% and 48.8%, respectively, were in remission at week 44, as compared with 35.9% of those receiving placebo (P = 0.005 and P = 0.04, respectively). Within each trial, adverse-event rates were similar among treatment groups.
CONCLUSIONS
Among patients with moderately to severely active Crohn’s disease, those receiving intravenous ustekinumab had a significantly higher rate of response than did those receiving placebo. Subcutaneous ustekinumab maintained remission in patients who had a clinical response to induction therapy. (Funded by Janssen Research and Development; ClinicalTrials.gov numbers, NCT01369329, NCT01369342, and NCT01369355.
- …