15,475 research outputs found

    The Adverse Impact of Temperature on Income

    Get PDF
    Crop Production/Industries, Risk and Uncertainty,

    Multiuser Precoding and Channel Estimation for Hybrid Millimeter Wave MIMO Systems

    Full text link
    In this paper, we develop a low-complexity channel estimation for hybrid millimeter wave (mmWave) systems, where the number of radio frequency (RF) chains is much less than the number of antennas equipped at each transceiver. The proposed channel estimation algorithm aims to estimate the strongest angle-of-arrivals (AoAs) at both the base station (BS) and the users. Then all the users transmit orthogonal pilot symbols to the BS via these estimated strongest AoAs to facilitate the channel estimation. The algorithm does not require any explicit channel state information (CSI) feedback from the users and the associated signalling overhead of the algorithm is only proportional to the number of users, which is significantly less compared to various existing schemes. Besides, the proposed algorithm is applicable to both non-sparse and sparse mmWave channel environments. Based on the estimated CSI, zero-forcing (ZF) precoding is adopted for multiuser downlink transmission. In addition, we derive a tight achievable rate upper bound of the system. Our analytical and simulation results show that the proposed scheme offer a considerable achievable rate gain compared to fully digital systems, where the number of RF chains equipped at each transceiver is equal to the number of antennas. Furthermore, the achievable rate performance gap between the considered hybrid mmWave systems and the fully digital system is characterized, which provides useful system design insights.Comment: 6 pages, accepted for presentation, ICC 201

    A Composite Likelihood-based Approach for Change-point Detection in Spatio-temporal Process

    Full text link
    This paper develops a unified, accurate and computationally efficient method for change-point inference in non-stationary spatio-temporal processes. By modeling a non-stationary spatio-temporal process as a piecewise stationary spatio-temporal process, we consider simultaneous estimation of the number and locations of change-points, and model parameters in each segment. A composite likelihood-based criterion is developed for change-point and parameters estimation. Asymptotic theories including consistency and distribution of the estimators are derived under mild conditions. In contrast to classical results in fixed dimensional time series that the asymptotic error of change-point estimator is Op(1)O_{p}(1), exact recovery of true change-points is guaranteed in the spatio-temporal setting. More surprisingly, the consistency of change-point estimation can be achieved without any penalty term in the criterion function. A computational efficient pruned dynamic programming algorithm is developed for the challenging criterion optimization problem. Simulation studies and an application to U.S. precipitation data are provided to demonstrate the effectiveness and practicality of the proposed method

    Constrained low-tubal-rank tensor recovery for hyperspectral images mixed noise removal by bilateral random projections

    Full text link
    In this paper, we propose a novel low-tubal-rank tensor recovery model, which directly constrains the tubal rank prior for effectively removing the mixed Gaussian and sparse noise in hyperspectral images. The constraints of tubal-rank and sparsity can govern the solution of the denoised tensor in the recovery procedure. To solve the constrained low-tubal-rank model, we develop an iterative algorithm based on bilateral random projections to efficiently solve the proposed model. The advantage of random projections is that the approximation of the low-tubal-rank tensor can be obtained quite accurately in an inexpensive manner. Experimental examples for hyperspectral image denoising are presented to demonstrate the effectiveness and efficiency of the proposed method.Comment: Accepted by IGARSS 201

    Income and temperatures: Working paper series--10-06

    Get PDF
    The contemporaneous relationship between temperature and income is important because it enables economists to estimate the economic impact of global warming without assuming a structural model. Until recently, empirical evidence generally suggests that there is a negative relationship between temperature and income, and therefore global warming has an adverse impact on economic activity. However, recently Nordhaus (2006) finds that the temperature-income relationship depends on how income is measured. We show in this paper that the results of Nordhaus (2006) may be due to a model misspecification or an omitted-variable problem. Based on a well-motivated temperature-income model, we find that the relationship between temperature and income is not dependent on income measurement. Our regression results show that the adverse impact of an increase of 3 degrees Celsius in temperature can be as much as a 9% decrease in income for developed nations such as the United States and the United Kingdom. Therefore, our results suggest more aggressive climate mitigation policy

    Hybrid Transceiver Optimization for Multi-Hop Communications

    Full text link
    Multi-hop communication with the aid of large-scale antenna arrays will play a vital role in future emergence communication systems. In this paper, we investigate amplify-and-forward based and multiple-input multiple-output assisted multi-hop communication, in which all nodes employ hybrid transceivers. Moreover, channel errors are taken into account in our hybrid transceiver design. Based on the matrix-monotonic optimization framework, the optimal structures of the robust hybrid transceivers are derived. By utilizing these optimal structures, the optimizations of analog transceivers and digital transceivers can be separated without loss of optimality. This fact greatly simplifies the joint optimization of analog and digital transceivers. Since the optimization of analog transceivers under unit-modulus constraints is non-convex, a projection type algorithm is proposed for analog transceiver optimization to overcome this difficulty. Based on the derived analog transceivers, the optimal digital transceivers can then be derived using matrix-monotonic optimization. Numeral results obtained demonstrate the performance advantages of the proposed hybrid transceiver designs over other existing solutions.Comment: 32 pages, 6 figures. This manuscript has been submitted to IEEE Journal on Selected Areas in Communications (special issue on Multiple Antenna Technologies for Beyond 5G
    • …
    corecore