17 research outputs found
Human Stem Cells for Ophthalmology: Recent Advances in Diagnostic Image Analysis and Computational Modelling
\ua9 2023, The Author(s).Purpose of Review: To explore the advances and future research directions in image analysis and computational modelling of human stem cells (hSCs) for ophthalmological applications. Recent Findings: hSCs hold great potential in ocular regenerative medicine due to their application in cell-based therapies and in disease modelling and drug discovery using state-of-the-art 2D and 3D organoid models. However, a deeper characterisation of their complex, multi-scale properties is required to optimise their translation to clinical practice. Image analysis combined with computational modelling is a powerful tool to explore mechanisms of hSC behaviour and aid clinical diagnosis and therapy. Summary: Many computational models draw on a variety of techniques, often blending continuum and discrete approaches, and have been used to describe cell differentiation and self-organisation. Machine learning tools are having a significant impact in model development and improving image classification processes for clinical diagnosis and treatment and will be the focus of much future research
Recommended from our members
Past, present and future mathematical models for buildings (i)
This is the first of two articles presenting a detailed review of the historical evolution of mathematical models applied in the development of building technology, including conventional buildings and intelligent buildings. After presenting the technical differences between conventional and intelligent buildings, this article reviews the existing mathematical models, the abstract levels of these models, and their links to the literature for intelligent buildings. The advantages and limitations of the applied mathematical models are identified and the models are classified in terms of their application range and goal. We then describe how the early mathematical models, mainly physical models applied to conventional buildings, have faced new challenges for the design and management of intelligent buildings and led to the use of models which offer more flexibility to better cope with various uncertainties. In contrast with the early modelling techniques, model approaches adopted in neural networks, expert systems, fuzzy logic and genetic models provide a promising method to accommodate these complications as intelligent buildings now need integrated technologies which involve solving complex, multi-objective and integrated decision problems
Recommended from our members
Past, present and future mathematical models for buildings (ii)
This article is the second part of a review of the historical evolution of mathematical models applied in the development of building technology. The first part described the current state of the art and contrasted various models with regard to the applications to conventional buildings and intelligent buildings. It concluded that mathematical techniques adopted in neural networks, expert systems, fuzzy logic and genetic models, that can be used to address model uncertainty, are well suited for modelling intelligent buildings. Despite the progress, the possible future development of intelligent buildings based on the current trends implies some potential limitations of these models. This paper attempts to uncover the fundamental limitations inherent in these models and provides some insights into future modelling directions, with special focus on the techniques of semiotics and chaos. Finally, by demonstrating an example of an intelligent building system with the mathematical models that have been developed for such a system, this review addresses the influences of mathematical models as a potential aid in developing intelligent buildings and perhaps even more advanced buildings for the future
Loss of H3K27me3 in meningiomas
BackgroundThere is a critical need for objective and reliable biomarkers of outcome in meningiomas beyond WHO classification. Loss of H3K27me3 has been reported as a prognostically unfavorable alteration in meningiomas. We sought to independently evaluate the reproducibility and prognostic value of H3K27me3 loss by immunohistochemistry (IHC) in a multicenter study.MethodsIHC staining for H3K27me3 and analyses of whole slides from 181 meningiomas across three centers was performed. Staining was analyzed by dichotomization into loss and retained immunoreactivity, and using a 3-tiered scoring system in 151 cases with clear staining. Associations of grouping with outcome were performed using Kaplan-Meier survival estimates.ResultsA total of 21 of 151 tumors (13.9%) demonstrated complete loss of H3K27me3 staining in tumor with retained endothelial staining. Overall, loss of H3K27me3 portended a worse outcome with shorter times to recurrence in our cohort, particularly for WHO grade 2 tumors which were enriched in our study. There were no differences in recurrence-free survival (RFS) for WHO grade 3 patients with retained vs loss of H3K27me3. Scoring by a 3-tiered system did not add further insights into the prognostic value of this H3K27me3 loss. Overall, loss of H3K27me3 was not independently associated with RFS after controlling for WHO grade, extent of resection, sex, age, and recurrence status of tumor on multivariable Cox regression analysis.ConclusionsLoss of H3K27me3 identifies a subset of WHO grade 2 and possibly WHO grade 1 meningiomas with increased recurrence risk. Pooled analyses of a larger cohort of samples with standardized reporting of clinical definitions and staining patterns are warranted
RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing
Alternative splicing plays a major role in the adaptation of cardiac function exemplified by the isoform switch of titin, which adjusts ventricular filling. We previously identified a rat strain deficient in titin splicing. Using genetic mapping, we found a loss-of-function mutation in RBM20 as the underlying cause for the pathological titin isoform expression. Mutations in human RBM20 have previously been shown to cause dilated cardiomyopathy. We showed that the phenotype of Rbm20 deficient rats resembles the human pathology. Deep sequencing of the human and rat cardiac transcriptome revealed an RBM20 dependent regulation of alternative splicing. Additionally to titin we identified a set of 30 genes with conserved regulation between human and rat. This network is enriched for genes previously linked to cardiomyopathy, ion-homeostasis, and sarcomere biology. Our studies emphasize the importance of posttranscriptional regulation in cardiac function and provide mechanistic insights into the pathogenesis of human heart failure