4 research outputs found

    Subsurface deposition of Cu-rich massive sulphide underneath a Palaeoproterozoic seafloor hydrothermal system—the Red Bore prospect, Western Australia

    Get PDF
    The Proterozoic Bryah and Yerrida basins of Western Australia contain important base and precious metal deposits. Here we present microtextural data, trace element and S isotope analyses of massive sulphide mineralisation hosted in Palaeoproterozoic subvolcanic rocks (dolerite) recently discovered at Red Bore. The small-scale high-grade mineralisation, which extends from the sub-surface to at least 95 m down-hole, is dominated by massive chalcopyrite and contains minor pyrite and Bi-Te-(Se) phases. Massive sulphide mineralisation is surrounded by discontinuous brecciated massive magnetite, and a narrow (< 2 m) alteration halo, which suggests very focussed fluid flow. Laser ablation ICP-MS analyses indicate that chalcopyrite contains up to 10 ppm Au and in excess of 100 ppm Ag. Sulphur isotope analyses of pyrite and chalcopyrite indicate a narrow range of δ34SVCD (− 0.2 to + 4.6 ‰), and no significant mass-independent fractionation (− 0.1 < Δ33S < + 0.05 ‰). Re-Os isotope analyses yield scattered values, which suggests secondary remobilisation. Despite the geographical proximity and the common Cu-Au-Ag association, the mineralisation at Red Bore has significant differences with massive sulphide mineralisation at neighbouring DeGrussa, as well as other massive sulphide deposits around the world. These differences include the geometry, sub-volcanic host rocks, extreme Cu enrichment and narrow δ34S ranges. Although a possible explanation for some of these characteristics is leaching of S and metals from the surrounding volcanic rocks, we favour formation as a result of the release of a magmatic fluid phase along very focussed pathways, and we propose that mixing of this fluid with circulating sea water contributed to sea floor mineralisation similar to neighbouring VHMS deposits. Our data are permissive of a genetic association of Red Bore mineralisation with VHMS deposits nearby, thus suggesting a direct connection between magmatism and mineralising fluids responsible for VHMS deposition at surface. Therefore, the Red Bore mineralisation may represent the magmatic roots of a VHMS system

    Intracranial Pressure Monitoring: Fundamental Considerations and Rationale for Monitoring

    No full text
    Traumatic brain injury (TBI) is a major cause of death and disability worldwide. In large part critical care for TBI is focused on the identification and management of secondary brain injury. This requires effective neuromonitoring that traditionally has centered on intracranial pressure (ICP). The purpose of this paper is to review the fundamental literature relative to the clinical application of ICP monitoring in TBI critical care and to provide recommendations on how the technique maybe applied to help patient management and enhance outcome. A PubMed search between 1980 and September 2013 identified 2,253 articles; 244 of which were reviewed in detail to prepare this report and the evidentiary tables. Several important concepts emerge from this review. ICP monitoring is safe and is best performed using a parenchymal monitor or ventricular catheter. While the indications for ICP monitoring are well established, there remains great variability in its use. Increased ICP, particularly the pattern of the increase and ICP refractory to treatment is associated with increased mortality. Class I evidence is lacking on how monitoring and management of ICP influences outcome. However, a large body of observational data suggests that ICP management has the potential to influence outcome, particularly when care is targeted and individualized and supplemented with data from other monitors including the clinical examination and imaging
    corecore