1,176 research outputs found
Ideal Point Modeling of Non-cognitive Constructs: Review and Recommendations for Research
Most psychological measurement models assume a monotonically increasing relation between the latent trait and the probability of responding. These models have historically been based on the measurement of abilities (e.g., cognitive), which have dominance properties. However, they are less appropriate for the measurement of non-cognitive constructs, or self-reported typical behaviors (e.g., attitudes, emotions, interests, personality), which have historically been assumed to have ideal point properties, or a nonmonotonic relation between the latent trait and the probability of responding. In this paper, we review the literature on ideal point modeling of non-cognitive constructs to present a theoretical framework that can help guide researchers on pertinent factors that may influence ideal point responding when assessing non-cognitive constructs. We also review the practical implications of not using ideal point response models for non-cognitive constructs and propose areas for research in non-cognitive construct assessment
Recommended from our members
Prognostic Significance of Elevated Cardiac Troponin-T Levels in Acute Respiratory Distress Syndrome Patients
Background: Elevated levels of biochemical markers of myocardial necrosis have been associated with worsened outcomes in Acute Respiratory Distress Syndrome (ARDS), but there are few prospective data on this relationship. We investigated elevated cardiac troponin T (cTnT) levels and their relationship with outcome in patients with ARDS. Methods A prospective cohort study of patients with ARDS was conducted at a tertiary-care academic medical center. Patients had blood taken within 48 hours of ARDS onset and assayed for cTnT. Patients were followed for the outcomes of 60-day mortality, number of organ failures, and days free of mechanical ventilation. Echocardiographic and electrocardiographic (ECG) data were analyzed for signs of myocardial ischemia, infarction, or other myocardial dysfunction. Results: 177 patients were enrolled, 70 of whom died (40%). 119 patients had detectable cTnT levels (67%). Median cTnT level was 0.03 ng/mL, IQR 0–0.10 ng/mL, and levels were higher among non-survivors (P = .008). Increasing cTnT level was significantly associated with increasing mortality (P = .008). The association between increasing cTnT level and mortality remained significant after adjustment in a multivariate model (HRadj = 1.45, 95% CI 1.17–1.81, P = .001). Elevated cTnT level was also associated with increased number of organ failures (P = .002), decreased number of days free of mechanical ventilation (P = .03), echocardiographic wall motion abnormalities (P = 0.001), and severity of tricuspid regurgitation (P = .04). There was no association between ECG findings of myocardial ischemia or infarction and elevated cTnT. Conclusions: Elevated cTnT levels are common in patients with ARDS, and are associated with worsened clinical outcomes and certain echocardiographic abnormalities. No association was seen between cTnT levels and ECG evidence of coronary ischemia
Associations of hippocampal subfields in the progression of cognitive decline related to Parkinson's disease.
OBJECTIVE: Hippocampal atrophy has been associated with mild cognitive impairment (MCI) in Parkinson's disease (PD). However, literature on how hippocampal atrophy affects the pathophysiology of cognitive impairment in PD has been limited. Previous studies assessed the hippocampus as an entire entity instead of their individual subregions. We studied the progression of cognitive status in PD subjects over 18 in relation to hippocampal subfields atrophy. METHODS: 65 PD subjects were included. Using the MDS task force criteria, PD subjects were classified as either having no cognitive impairment (PD-NCI) or PD-MCI. We extended the study by investigating the hippocampal subfields atrophy patterns in those who converted from PD-NCI to PD-MCI (PD-converters) compared to those who remained cognitively stable (PD-stable) over 18 months. Freesurfer 6.0 was used to perform the automated segmentation of the hippocampus into thirteen subregions. RESULTS: PD-MCI showed lower baseline volumes in the left fimbria, right CA1, and right HATA; and lower global cognition scores compared to PD-NCI. Baseline right CA1 was also correlated with baseline attention. Over 18 months, decline in volumes of CA2-3 and episodic memory were also seen in PD-converters compared to PD-stable. Baseline volumes of GC-DG, right CA4, left parasubiculum, and left HATA were predictive of the conversion from PD-NCI to PD-MCI. CONCLUSION: The findings from this study add to the anatomical knowledge of hippocampal subregions in PD, allowing us to understand the unique functional contribution of each subfield. Structural changes in the hippocampus subfields could be early biomarkers to detect cognitive impairment in PD
Synthetic RNA modules for fine-tuning gene expression levels in yeast by modulating RNase III activity
The design of synthetic gene networks requires an extensive genetic toolbox to control the activities and levels of protein components to achieve desired cellular functions. Recently, a novel class of RNA-based control modules, which act through post-transcriptional processing of transcripts by directed RNase III (Rnt1p) cleavage, were shown to provide predictable control over gene expression and unique properties for manipulating biological networks. Here, we increase the regulatory range of the Rnt1p control elements, by modifying a critical region for enzyme binding to its hairpin substrates, the binding stability box (BSB). We used a high throughput, cell-based selection strategy to screen a BSB library for sequences that exhibit low fluorescence and thus high Rnt1p processing efficiencies. Sixteen unique BSBs were identified that cover a range of protein expression levels, due to the ability of the sequences to affect the hairpin cleavage rate and to form active cleavable complexes with Rnt1p. We further demonstrated that the activity of synthetic Rnt1p hairpins can be rationally programmed by combining the synthetic BSBs with a set of sequences located within a different region of the hairpin that directly modulate cleavage rates, providing a modular assembly strategy for this class of RNA-based control elements
MicroRNA expression profiles in pediatric dysembryoplastic neuroepithelial tumors.
© Springer Science+Business Media New York 2015Among noncoding RNAs, microRNAs (miRNAs) have been most extensively studied, and their biology has repeatedly been proven critical for central nervous system pathological conditions. The diagnostic value of several miRNAs was appraised in pediatric dysembryoplastic neuroepithelial tumors (DNETs) using miRNA microarrays and receiving operating characteristic curves analyses. Overall, five pediatric DNETs were studied. As controls, 17 samples were used: the FirstChoice Human Brain Reference RNA and 16 samples from deceased children who underwent autopsy and were not present with any brain malignancy. The miRNA extraction was carried out using the mirVANA miRNA Isolation Kit, while the experimental approach included miRNA microarrays covering 1211 miRNAs. Quantitative real-time polymerase chain reaction was performed to validate the expression profiles of miR-1909* and miR-3138 in all samples initially screened with miRNA microarrays. Our findings indicated that miR-3138 might act as a tumor suppressor gene when down-regulated and miR-1909* as a putative oncogenic molecule when up-regulated in pediatric DNETs compared to the control cohort. Subsequently, both miRNA signatures might serve as putative diagnostic biomarkers for pediatric DNETs.Peer reviewedFinal Accepted Versio
- …