2 research outputs found

    Towards an Early Software Estimation Using Log-Linear Regression and a Multilayer Perceptron Model

    Get PDF
    Software estimation is a tedious and daunting task in project management and software development. Software estimators are notorious in predicting software effort and they have been struggling in the past decades to provide new models to enhance software estimation. The most critical and crucial part of software estimation is when estimation is required in the early stages of the software life cycle where the problem to be solved has not yet been completely revealed. This paper presents a novel log-linear regression model based on the use case point model (UCP) to calculate the software effort based on use case diagrams. A fuzzy logic approach is used to calibrate the productivity factor in the regression model. Moreover, a multilayer perceptron (MLP) neural network model was developed to predict software effortbased on the software size and team productivity. Experiments show that the proposed approach outperforms the original UCP model. Furthermore, a comparison between the MLP and log-linear regression models was conducted based on the size of the projects. Results demonstrate that the MLP model can surpass the regression model when small projects are used, but the log-linear regression model gives better results when estimating larger projects

    Enhancing Use Case Points Estimation Method Using Soft Computing Techniques

    Get PDF
    Software estimation is a crucial task in software engineering. Software estimation encompasses cost, effort, schedule, and size. The importance of software estimation becomes critical in the early stages of the software life cycle when the details of software have not been revealed yet. Several commercial and non-commercial tools exist to estimate software in the early stages. Most software effort estimation methods require software size as one of the important metric inputs and consequently, software size estimation in the early stages becomes essential. One of the approaches that has been used for about two decades in the early size and effort estimation is called use case points. Use case points method relies on the use case diagram to estimate the size and effort of software projects. Although the use case points method has been widely used, it has some limitations that might adversely affect the accuracy of estimation. This paper presents some techniques using fuzzy logic and neural networks to improve the accuracy of the use case points method. Results showed that an improvement up to 22% can be obtained using the proposed approach
    corecore