23 research outputs found

    Physical activity and clustered cardiovascular disease risk factors in young children: a cross-sectional study (the IDEFICS study)

    Get PDF
    <p>Background The relevance of physical activity (PA) for combating cardiovascular disease (CVD) risk in children has been highlighted, but to date there has been no large-scale study analyzing that association in children aged ≤9 years of age. This study sought to evaluate the associations between objectively-measured PA and clustered CVD risk factors in a large sample of European children, and to provide evidence for gender-specific recommendations of PA.</p> <p>Methods Cross-sectional data from a longitudinal study in 16,224 children aged 2 to 9 were collected. Of these, 3,120 (1,016 between 2 to 6 years, 2,104 between 6 to 9 years) had sufficient data for inclusion in the current analyses. Two different age-specific and gender-specific clustered CVD risk scores associated with PA were determined. First, a CVD risk factor (CRF) continuous score was computed using the following variables: systolic blood pressure (SBP), total triglycerides (TG), total cholesterol (TC)/high-density lipoprotein cholesterol (HDL-c) ratio, homeostasis model assessment of insulin resistance (HOMA-IR), and sum of two skinfolds (score CRFs). Secondly, another CVD risk score was obtained for older children containing the score CRFs + the cardiorespiratory fitness variable (termed score CRFs + fit). Data used in the current analysis were derived from the IDEFICS (‘Identification and prevention of Dietary- and lifestyle-induced health EFfects In Children and infantS’) study.</p> <p>Results In boys <6 years, the odds ratios (OR) for CVD risk were elevated in the least active quintile of PA (OR: 2.58) compared with the most active quintile as well as the second quintile for vigorous PA (OR: 2.91). Compared with the most active quintile, older children in the first, second and third quintiles had OR for CVD risk score CRFs + fit ranging from OR 2.69 to 5.40 in boys, and from OR 2.85 to 7.05 in girls.</p> <p>Conclusions PA is important to protect against clustering of CVD risk factors in young children, being more consistent in those older than 6 years. Healthcare professionals should recommend around 60 and 85 min/day of moderate-to-vigorous PA, including 20 min/day of vigorous PA.</p&gt

    Attainment of Brown Adipocyte Features in White Adipocytes of Hormone-Sensitive Lipase Null Mice

    Get PDF
    BACKGROUND: Hormone-sensitive lipase (HSL) is expressed predominantly in adipose tissue, where it plays an important role in catecholamine-stimulated hydrolysis of stored tri- and diglycerides, thus mobilizing fatty acids. HSL exhibits broad substrate specificity and besides acylglycerides it hydrolyzes cholesteryl esters, retinyl esters and lipoidal esters. Despite its role in fatty acid mobilization, HSL null mice have been shown to be resistant to diet-induced obesity. METHODOLOGY/PRINCIPAL FINDINGS: Following a high-fat diet (HFD) regimen, energy expenditure, measured using indirect calorimetry, was increased in HSL null mice. White adipose tissue of HSL null mice was characterized by reduced mass and reduced protein expression of PPARgamma, a key transcription factor in adipogenesis, and stearoyl-CoA desaturase 1, the expression of which is known to be positively correlated to the differentiation state of the adipocyte. The protein expression of uncoupling protein-1 (UCP-1), the highly specific marker of brown adipocytes, was increased 7-fold in white adipose tissue of HSL null mice compared to wildtype littermates. Transmission electron microscopy revealed an increase in the size of mitochondria of white adipocytes of HSL null mice. The mRNA expression of pRb and RIP140 was decreased in isolated white adipocytes, while the expression of UCP-1 and CPT1 was increased in HSL null mice compared to wildtype littermates. Basal oxygen consumption was increased almost 3-fold in white adipose tissue of HSL null mice and was accompanied by increased uncoupling activity. CONCLUSIONS: These data suggest that HSL is involved in the determination of white versus brown adipocytes during adipocyte differentiation The exact mechanism(s) underlying this novel role of HSL remains to be elucidated, but it seems clear that HSL is required to sustain normal expression levels of pRb and RIP140, which both promote differentiation into the white, rather than the brown, adipocyte lineage

    On-body to on-body channel characterization

    Full text link
    Interest in on-body communication channels is growing as the use of wireless devices increases in medical, consumer and military sensor applications. This paper presents an experimental investigation and analysis of the narrowband on-body propagation channel. This analysis considers each of the factors affecting the channel during a range of stationary and motion activities in different environments with actual wireless mote devices on the body. Use of such motes allows greater freedom in the subject's movements and the inclusion of real-world indoor and outdoor environments in a test sequence. This paper identifies and analyses the effect of the different components of the signal propagation (mean propagation path gain, large-scale fading and small-scale fading) and the cause of the losses and variation due to activities, positions or environmental factors. Our results show the effect on the received signal and the impact of voluntary and involuntary movements, which cause shadowing effects. The analysis also allows us to identify sensor positions on the body that are more reliable and those positions that may require a relay or those that may be suitable for acting as a relay

    Extending the Lifetime of Sensor Networks through Adaptive Reclustering

    Get PDF
    We analyze the lifetime of clustered sensor networks with decentralized binary detection under a physical layer quality-of-service (QoS) constraint, given by the maximum tolerable probability of decision error at the access point (AP). In order to properly model the network behavior, we consider four different distributions (exponential, uniform, Rayleigh, and lognormal) for the lifetime of a single sensor. We show the benefits, in terms of longer network lifetime, of adaptive reclustering. We also derive an analytical framework for the computation of the network lifetime and the penalty, in terms of time delay and energy consumption, brought by adaptive reclustering. On the other hand, absence of reclustering leads to a shorter network lifetime, and we show the impact of various clustering configurations under different QoS conditions. Our results show that the organization of sensors in a few big clusters is the winning strategy to maximize the network lifetime. Moreover, the observation of the phenomenon should be frequent in order to limit the penalties associated with the reclustering procedure. We also apply the developed framework to analyze the energy consumption associated with the proposed reclustering protocol, obtaining results in good agreement with the performance of realistic wireless sensor networks. Finally, we present simulation results on the lifetime of IEEE 802.15.4 wireless sensor networks, which enrich the proposed analytical framework and show that typical networking performance metrics (such as throughput and delay) are influenced by the sensor network lifetime
    corecore