83 research outputs found

    The conceptualisation of health and disease in veterinary medicine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The concept of health, as well as the concept of disease, is central in veterinary medicine. However, the definitions "health" and "disease" are not generally acknowledged by veterinarians. The aim of this study was to examine how the concepts "health" and "disease" are defined in veterinary textbooks.</p> <p>Methods</p> <p>Veterinary textbooks in several disciplines were investigated, but only textbooks with explicit definitions of the concepts were selected for examination.</p> <p>Results</p> <p>Eighty out of the 500 relevant books within veterinary medicine were written for non-veterinarians. Eight percent of the books had an explicit definition of health and/or disease. More frequently, textbooks written for non veterinarians did have definitions of health or disease, compared to textbooks written for professionals. A division of health definitions in five different categories was suggested, namely:</p> <p>1. Health as normality, 2. Health as biological function, 3. Health as homeostasis, 4. Health as physical and psychological well-being and 5. Health as productivity including reproduction.</p> <p>Conclusion</p> <p>Few veterinary textbooks had any health or disease definition at all. Furthermore, explicit definitions of health stated by the authors seemed to have little impact on how health and disease are handled within the profession. Veterinary medicine would probably gain from theoretical discussions about health and disease.</p

    Predicting Bison Migration out of Yellowstone National Park Using Bayesian Models

    Get PDF
    Long distance migrations by ungulate species often surpass the boundaries of preservation areas where conflicts with various publics lead to management actions that can threaten populations. We chose the partially migratory bison (Bison bison) population in Yellowstone National Park as an example of integrating science into management policies to better conserve migratory ungulates. Approximately 60% of these bison have been exposed to bovine brucellosis and thousands of migrants exiting the park boundary have been culled during the past two decades to reduce the risk of disease transmission to cattle. Data were assimilated using models representing competing hypotheses of bison migration during 1990–2009 in a hierarchal Bayesian framework. Migration differed at the scale of herds, but a single unifying logistic model was useful for predicting migrations by both herds. Migration beyond the northern park boundary was affected by herd size, accumulated snow water equivalent, and aboveground dried biomass. Migration beyond the western park boundary was less influenced by these predictors and process model performance suggested an important control on recent migrations was excluded. Simulations of migrations over the next decade suggest that allowing increased numbers of bison beyond park boundaries during severe climate conditions may be the only means of avoiding episodic, large-scale reductions to the Yellowstone bison population in the foreseeable future. This research is an example of how long distance migration dynamics can be incorporated into improved management policies

    Estimating loss of Brucella abortus antibodies from age-specific serological data in elk

    Get PDF
    Serological data are one of the primary sources of information for disease monitoring in wildlife. However, the duration of the seropositive status of exposed individuals is almost always unknown for many free-ranging host species. Directly estimating rates of antibody loss typically requires difficult longitudinal sampling of individuals following seroconversion. Instead, we propose a Bayesian statistical approach linking age and serological data to a mechanistic epidemiological model to infer brucellosis infection, the probability of antibody loss, and recovery rates of elk (Cervus canadensis) in the Greater Yellowstone Ecosystem. We found that seroprevalence declined above the age of ten, with no evidence of disease-induced mortality. The probability of antibody loss was estimated to be 0.70 per year after a five-year period of seropositivity and the basic reproduction number for brucellosis to 2.13. Our results suggest that individuals are unlikely to become re-infected because models with this mechanism were unable to reproduce a significant decline in seroprevalence in older individuals. This study highlights the possible implications of antibody loss, which could bias our estimation of critical epidemiological parameters for wildlife disease management based on serological data

    Brugia malayi Gene Expression in Response to the Targeting of the Wolbachia Endosymbiont by Tetracycline Treatment

    Get PDF
    Filarial parasites afflict hundreds of millions of individuals worldwide, and cause significant public health problems in many of the poorest countries in the world. Most of the human filarial parasite species, including Brugia malayi, harbor endosymbiotic bacteria of the genus Wolbachia. Elimination of the endosymbiont leads to sterilization of the adult female worm. The need exists for the development of new chemotherapeutic approaches that can practically exploit the vulnerability of the filaria to the loss of the Wolbachia. In this study we performed ultrastructural and microarray analyses of female worms collected from infected jirds treated with tetracycline. Results suggest that the endosymbiotic bacteria were specifically affected by the antibiotic. Furthermore, in response to the targeting of the endosymbiont, the parasites modulated expression of their genes. When exposed to tetracycline, the parasites over-expressed genes involved in protein synthesis. Expression of genes involved in cuticle biosynthesis and energy metabolism was, on the other hand, limited

    Cerebral Vascular Hamartomas in Five Dogs

    No full text

    Use of Detergent Extracts of Brucella Abortus

    No full text
    • …
    corecore