1,135 research outputs found
Angpow: a software for the fast computation of accurate tomographic power spectra
The statistical distribution of galaxies is a powerful probe to constrain
cosmological models and gravity. In particular the matter power spectrum
brings information about the cosmological distance evolution and the galaxy
clustering together. However the building of from galaxy catalogues
needs a cosmological model to convert angles on the sky and redshifts into
distances, which leads to difficulties when comparing data with predicted
from other cosmological models, and for photometric surveys like LSST.
The angular power spectrum between two bins located at
redshift and contains the same information than the matter power
spectrum, is free from any cosmological assumption, but the prediction of
from is a costly computation when performed exactly.
The Angpow software aims at computing quickly and accurately the auto
() and cross () angular power spectra between redshift
bins. We describe the developed algorithm, based on developments on the
Chebyshev polynomial basis and on the Clenshaw-Curtis quadrature method. We
validate the results with other codes, and benchmark the performance. Angpow is
flexible and can handle any user defined power spectra, transfer functions, and
redshift selection windows. The code is fast enough to be embedded inside
programs exploring large cosmological parameter spaces through the
comparison with data. We emphasize that the Limber's
approximation, often used to fasten the computation, gives wrong
values for cross-correlations.Comment: Published in Astronomy & Astrophysic
A direct method to compute the galaxy count angular correlation function including redshift-space distortions
In the near future, cosmology will enter the wide and deep galaxy survey area
allowing high-precision studies of the large scale structure of the universe in
three dimensions. To test cosmological models and determine their parameters
accurately, it is natural to confront data with exact theoretical expectations
expressed in the observational parameter space (angles and redshift). The
data-driven galaxy number count fluctuations on redshift shells, can be used to
build correlation functions on and between shells which
can probe the baryonic acoustic oscillations, the distance-redshift distortions
as well as gravitational lensing and other relativistic effects. Transforming
the model to the data space usually requires the computation of the angular
power spectrum but this appears as an artificial and
inefficient step plagued by apodization issues. In this article we show that it
is not necessary and present a compact expression for
that includes directly the leading density and redshift space distortions terms
from the full linear theory. It can be evaluated using a fast integration
method based on Clenshaw-Curtis quadrature and Chebyshev polynomial series.
This new method to compute the correlation functions without any Limber
approximation, allows us to produce and discuss maps of the correlation
function directly in the observable space and is a significant step towards
disentangling the data from the tested models
Constraining the CDM and Galileon models with recent cosmological data
The Galileon theory belongs to the class of modified gravity models that can
explain the late-time accelerated expansion of the Universe. In previous works,
cosmological constraints on the Galileon model were derived, both in the
uncoupled case and with a disformal coupling of the Galileon field to matter.
There, we showed that these models agree with the most recent cosmological
data. In this work, we used updated cosmological data sets to derive new
constraints on Galileon models, including the case of a constant conformal
Galileon coupling to matter. We also explored the tracker solution of the
uncoupled Galileon model. After updating our data sets, especially with the
latest \textit{Planck} data and BAO measurements, we fitted the cosmological
parameters of the CDM and Galileon models. The same analysis framework
as in our previous papers was used to derive cosmological constraints, using
precise measurements of cosmological distances and of the cosmic structure
growth rate. We showed that all tested Galileon models are as compatible with
cosmological data as the CDM model. This means that present
cosmological data are not accurate enough to distinguish clearly between both
theories. Among the different Galileon models, we found that a conformal
coupling is not favoured, contrary to the disformal coupling which is preferred
at the level over the uncoupled case. The tracker solution of the
uncoupled Galileon model is also highly disfavoured due to large tensions with
supernovae and \textit{Planck}+BAO data. However, outside of the tracker
solution, the general uncoupled Galileon model, as well as the general
disformally coupled Galileon model, remain the most promising Galileon
scenarios to confront with future cosmological data. Finally, we also discuss
constraints coming from Lunar Laser Ranging experiment and gravitational wave
speed of propagation.Comment: 22 pages, 17 figures, published version in A&
Improved planning abilities in binge eating.
OBJECTIVE: The role of planning in binge eating episodes is unknown. We investigated the characteristics of planning associated with food cues in binging patients. We studied planning based on backward reasoning, reasoning that determines a sequence of actions back to front from the final outcome. METHOD: A cross-sectional study was conducted with 20 healthy participants, 20 bulimia nervosa (BN), 22 restrictive (ANR) and 23 binging anorexia nervosa (ANB), without any concomitant impulsive disorder. In neutral/relaxing, binge food and stressful conditions, backward reasoning was assessed with the Race game, promotion of delayed large rewards with an intertemporal discounting task, attention with the Simon task, and repeating a dominant behavior with the Go/No-go task. RESULTS: BN and to a lower extent ANB patients succeeded more at the Race game in food than in neutral condition. This difference discriminated binging from non-binging participants. Backward reasoning in the food condition was associated with lower approach behavior toward food in BN patients, and higher food avoidance in ANB patients. Enhanced backward reasoning in the food condition related to preferences for delayed large rewards in BN patients. In BN and ANB patients the enhanced success rate at the Race game in the food condition was associated with higher attention paid to binge food. CONCLUSION: These findings introduce a novel process underlying binges: planning based on backward reasoning is associated with binges. It likely aims to reduce craving for binge foods and extend binge refractory period in BN patients, and avoid binging in ANB patients. Shifts between these goals might explain shifts between eating disorder subtypes
First experimental constraints on the disformally coupled Galileon model
The Galileon model is a modified gravity model that can explain the late-time
accelerated expansion of the Universe. In a previous work, we derived
experimental constraints on the Galileon model with no explicit coupling to
matter and showed that this model agrees with the most recent cosmological
data. In the context of braneworld constructions or massive gravity, the
Galileon model exhibits a disformal coupling to matter, which we study in this
paper. After comparing our constraints on the uncoupled model with recent
studies, we extend the analysis framework to the disformally coupled Galileon
model and derive the first experimental constraints on that coupling, using
precise measurements of cosmological distances and the growth rate of cosmic
structures. In the uncoupled case, with updated data, we still observe a low
tension between the constraints set by growth data and those from distances. In
the disformally coupled Galileon model, we obtain better agreement with data
and favour a non-zero disformal coupling to matter at the level.
This gives an interesting hint of the possible braneworld origin of Galileon
theory.Comment: 9 pages, 6 figures, updated versio
Challenges in Bridging Social Semantics and Formal Semantics on the Web
This paper describes several results of Wimmics, a research lab which names
stands for: web-instrumented man-machine interactions, communities, and
semantics. The approaches introduced here rely on graph-oriented knowledge
representation, reasoning and operationalization to model and support actors,
actions and interactions in web-based epistemic communities. The re-search
results are applied to support and foster interactions in online communities
and manage their resources
Two-Loop Superstrings IV, The Cosmological Constant and Modular Forms
The slice-independent gauge-fixed superstring chiral measure in genus 2
derived in the earlier papers of this series for each spin structure is
evaluated explicitly in terms of theta-constants. The slice-independence allows
an arbitrary choice of superghost insertion points q_1, q_2 in the explicit
evaluation, and the most effective one turns out to be the split gauge defined
by S_{\delta}(q_1,q_2)=0. This results in expressions involving bilinear
theta-constants M. The final formula in terms of only theta-constants follows
from new identities between M and theta-constants which may be interesting in
their own right. The action of the modular group Sp(4,Z) is worked out
explicitly for the contribution of each spin structure to the superstring
chiral measure. It is found that there is a unique choice of relative phases
which insures the modular invariance of the full chiral superstring measure,
and hence a unique way of implementing the GSO projection for even spin
structure. The resulting cosmological constant vanishes, not by a Riemann
identity, but rather by the genus 2 identity expressing any modular form of
weight 8 as the square of a modular form of weight 4. The degeneration limits
for the contribution of each spin structure are determined, and the
divergences, before the GSO projection, are found to be the ones expected on
physical grounds.Comment: 58 pages, no figure
Position measurement and the nonlinear regime of cavity quantum optomechanics
Position measurement is central to cavity quantum optomechanics and underpins
a wide array of sensing technologies and tests of fundamental physics.
Excitingly, several optomechanics experiments are now entering the highly
sought nonlinear regime where optomechanical interactions are large even for
low light levels. Within this regime, new quantum phenomena and improved
performance may be achieved, however, an approach for mechanical position
measurement and a corresponding nonlinear theoretical toolbox are needed to
unlock these capabilities. Here, we develop a framework of cavity quantum
optomechanics that captures the nonlinearities of both the radiation-pressure
interaction and the cavity response and propose how position measurement can be
performed in this regime. Our proposal utilizes optical general-dyne detection
to obtain mechanical position information imprinted onto both the optical
amplitude and phase quadratures and enables both pulsed and continuous modes of
operation. Moreover, our proposal and theoretical framework are readily
applicable to current and near-future experiments and will allow a range of
advances to be made in e.g. quantum metrology, explorations of the standard
quantum limit, and quantum measurement and control.Comment: Main and supplemental material in single file. 20 pages, 7 figure
Why Don't We Have a Covariant Superstring Field Theory?
This talk deals with the old problem of formulatingn a covariant quantum
theory of superstrings, ``covariant'' here meaning having manifest Lorentz
symmetry and supersymmetry. The advantages and disadvantages of several
quantization methods are reviewed. Special emphasis is put on the approaches
using twistorial variables, and the algebraic structures of these. Some
unsolved problems are identified.Comment: 5 pages, Goteborg-ITP-94-24, plain te
- …