267 research outputs found

    Shuttle TPS thermal performance and analysis methodology

    Get PDF
    Thermal performance of the thermal protection system was approximately as predicted. The only extensive anomalies were filler bar scorching and over-predictions in the high Delta p gap heating regions of the orbiter. A technique to predict filler bar scorching has been developed that can aid in defining a solution. Improvement in high Delta p gap heating methodology is still under study. Minor anomalies were also examined for improvements in modeling techniques and prediction capabilities. These include improved definition of low Delta p gap heating, an analytical model for inner mode line convection heat transfer, better modeling of structure, and inclusion of sneak heating. The limited number of problems related to penetration items that presented themselves during orbital flight tests were resolved expeditiously, and designs were changed and proved successful within the time frame of that program

    A novel Model for the Mechanism of Laser-Induced Back Side Wet Etching in Aqueous Cu Solutions using ns Pulses at 1064nm

    Get PDF
    Laser induced back side wet etching has shown to be a promising tool for the micro-structuring of transparent materials. Detailed studies have been performed using UV excimer laser sources, aromatic hydrocarbon and liquid metal absorbers. Only little work is reported however using aqueous Cu solutions as absorbers and ns laser pulses at 1064 nm wavelength. We present a novel model for this specific setup. Our experiments indicate that physisorbed Cu2+ ions at the polar glass surface absorb the laser light. This leads to local thermal stresses in the glass and subsequent micro-ablation

    Laser-induced chemical liquid-phase deposition of copper on transparent substrates

    Get PDF
    Laser-induced chemical liquid phase deposition allows maskless manufacturing of metallic structures on the surface of dielectrics and is prospected to be a promising tool in the field of microelectronics and microfluidics. The aim of the work presented here is to combine this deposition method with a related micro-structuring method known as laser-induced backside wet etching. Fabricating both, microstructured surface structures and subsequent deposition of conducting patterns within the same setup would be an interesting tool for rapid prototyping.To demonstrate the functional principle of this combined approach conductive copper lines were deposited at the backside of both polished and structured soda lime glass substrates by using a focused, scanning ns-pulsed Ytterbium fiber laser at 532nm wavelength. The deposition process is initiated by a photo induced reaction of a CuSO4-based liquid precursor in contact with the backside of the substrate. The obtained metallic copper deposits are crystalline, stable under ambient conditions and have a conductivity in the same order of magnitude as bulk copper

    Influence of the pre-treatment of glass substrates on Laser-Induced Backside Wet Etching using NIR Nanosecond-Pulses and Cu-based solutions

    Get PDF
    Laser induced backside wet etching (LIBWE) has shown to be a promising tool for the micro-structuring of transparent materials. Our group has investigated LIBWE using NIR ns-laser pulses and Cu-based absorber liquids. Focus of this paper is to investigate the influence of the pre-treatment of the transparent substrate on ablation. For this purpose experiments were done on untreated and silanized soda lime glass surfaces. Our results show that depending on the absorber liquid the silanization of the substrate either enhances or delays the ablation. Possible ablation models for the different experimental settings will be discussed

    Carrier Detection of Ovine Hemophilia A Using an RFLP Marker, and Mapping of the Factor VIII Gene on the Ovine X-Chromosome

    Get PDF
    Ovine hemophilia A is an X-linked recessive bleeding disorder. For diagnostic purposes, restriction fragment length polymorphism (RFLP) analysis in the region of the factor VIII (F-VIII) gene was carried out using human F-VIII gene probes. The probe St14, Known to detect a highly polymorphic region that is closely linked to the F-VIII gene in humans, hybridized nonspecifcally with DNA from sheep. Searching for Intragenic RFLPs, the entire 9.0-kb coding sequence of the human F-VIII was used as a probe. Using the 1.8-kb Sstl/Kpnl F-VIII cDNA probe for hybridization, an Mspl-RFLP with allelic bands of 5.8 Kb (A1) and 4.2 kb (A2) was detected. A1 was in linkage phase with the mutated allele responsible for hemophilia A. The F-VIII locus in the sheep genome was assigned to the long arm of the X-chromosome in the region Xq24-q33, Using In situ hybridization with a 3-Kb human F-VIII cDNA probe to QFQ banded sheep metaphase chromosome

    Micro structuring of transparent materials with NIR ns-laser pulses

    Get PDF
    A current challenge in laser processing is high precision micromachining of transparent materials, e.g. to manufacture micro-optical elements. This can be achieved amongst others by using laser induced backside wet etching. Research has been done by several groups in the last years. Most of the published results were obtained by using UV excimer lasers. Our approach deals withthe implementation of the technique for NIR laser sources. We investigated the effects of different pulse widths and repetitionrates on laser induced back side wet etching for 1064nm wavelength and for different absorbers

    Phase retrieval for probability distributions on quantum groups and braided groups

    Get PDF
    For nilpotent quantum groups [as introduced by Franz et al.((7))], we show that (in sharp contrast to the classical cast) the symmetrization mu * <(mu)over bar> of a probability distribution mu and the first moments of mu together determine uniquely the original distribution mu

    Identification of a novel benzimidazole pyrazolone scaffold that inhibits KDM4 lysine demethylases and reduces proliferation of prostate cancer cells

    Get PDF
    Human lysine demethylase (KDM) enzymes (KDM1-7) constitute an emerging class of therapeutic targets, with activities that support growth and development of metastatic disease. By interacting with and co-activating the androgen receptor, the KDM4 subfamily (KDM4A-E) promotes aggressive phenotypes of prostate cancer (PCa). Knockdown of KDM4 expression or inhibition of KDM4 enzyme activity reduces the proliferation of PCa cell lines and highlights inhibition of lysine demethylation as a possible therapeutic method for PCa treatment. To address this possibility, we screened the ChemBioNet small molecule library for inhibitors of the human KDM4E isoform and identified several compounds with IC50 values in the low micromolar range. Two hits, validated as active by an orthogonal enzyme-linked immunosorbent assay, displayed moderate selectivity toward the KDM4 subfamily and exhibited antiproliferative effects in cellular models of PCa. These compounds were further characterized by their ability to maintain the transcriptionally silent histone H3 tri-methyl K9 epigenetic mark at subcytotoxic concentrations. Taken together, these efforts identify and validate a hydroxyquinoline scaffold and a novel benzimidazole pyrazolone scaffold as tractable for entry into hit-to-lead chemical optimization campaigns

    Impact assessment of the biological control of the cassava mealybug, Phenacoccus manihoti Matile-Ferrero (Hemiptera: Pseudococcidae), by the introduced parasitoid Epidinocarsis lopezi (De Santis) (Hymenoptera: Encyrtidae)

    Get PDF
    The impact of Phenacoccus manihoti Matile-Ferrero on growth and tuber yield of cassava, and the results of its biological control by the exotic parasitoid Epidinocarsis lopezi (De Santis) were investigated in a survey of 60 farmers' fields in Ghana and Ivory Coast over an area of 180 000 km2 of the savana and forest ecosystems. Twenty-nine variables associated with plant growth, agronomic and environmental factors, and insect populations were recorded. Densities of P. manihoti were closely correlated with stunting of the cassava shoot tips and, less so, with the rate of stunting early in the growing season. With increasing mealybug infestations, average harvest indices declined and populations of E. lopezi and of indigenous coccinellids increased, but parasitoids were found at lower host levels than were predators. The length of time E. lopezi had been present in an area was the most important factor influencing mealybug densities. Thus, P. manihoti populations were significantly lower where E. lopezi had been present for more than half the planting season than in areas where E. lopezi was lacking or had been only recently introduced. A significant proportion of the farmers in the savanna zone, where P. manihoti populations were much higher than in the forest zone, had observed this decline due to E. lopezi. Tuber yield losses due to P. manihoti in the absence of E. lopezi were tentatively estimated at 463 g/plant in the savanna zone. No significant effect was found in the forest region. When E. lopezi was present, average P. manihoti damage scores were reduced significantly, both in the savanna and forest regions. The increase in yields was 228g/plant or about 2.48 t/ha in the savanna regio

    Measuring Optical Properties On Rough And Liquid Metal Surfaces

    Get PDF
    For understanding and optimizing laser processing of metals and alloys the optical properties, especially the absorption of the work piece in function of the temperature up to the liquid phase have to be known [1]. There are several approaches to extend the Drude-Model [2] for optical properties of metal to temperature dependence [3, 4, 5]. However, a verification of these models is difficult due to the lack of sufficient experimental data. Even though measuring optical properties with ellipsometry is well established, such measurements on metals and alloys at elevated temperatures up to the liquid state are very challenging. To collect the optical properties of different metals and alloys like Al, Ti, Ag, Cu and steel in the solid and liquid state a custom-made high-temperature ellipsometer was used. The instrument is also used to investigate the influence of curved and rough surfaces which may occur due to the heating of the samples during the ellipsometric measurements
    corecore