16,095 research outputs found

    Field dependence of the magnetic spectrum in anisotropic and Dzyaloshinskii-Moriya antiferromagnets: I. Theory

    Full text link
    We consider theoretically the effects of an applied uniform magnetic field on the magnetic spectrum of anisotropic two-dimensional and Dzyaloshinskii-Moriya layered quantum Heisenberg antiferromagnets. The first case is relevant for systems such as the two-dimensional square lattice antiferromagnet Sr(2)CuO(2)Cl(2), while the later is known to be relevant to the physics of the layered orthorhombic antiferromagnet La(2)CuO(4). We first establish the correspondence betwenn the low-energy spectrum obtained within the anisotropic non-linear sigma model and by means of the spin-wave approximation for a standard easy-axis antiferromagent. Then, we focus on the field-theory approach to calculate the magnetic field dependence of the magnon gaps and spectral intensities for magnetic fields applied along the three possible crystallographic directions. We discuss the various possible ground states and their evolution with temperature for the different field orientations, and the occurrence of spin-flop transitions for fields perpendicular to the layers (transverse fields) as well as for fields along the easy axis (longitudinal fields). Measurements of the one-magnon Raman spectrum in Sr(2)CuO(2)Cl(2) and La(2)CuO(4) and a comparison between the experimental results and the predictions of the present theory will be reported in part II of this research work [L. Benfatto et al., cond-mat/0602664].Comment: 21 pages, 11 figures, final version. Part II of the present work is presented in cond-mat/060266

    Initial behavioural and attitudinal responses to influenza A, H1N1 ('swine flu')

    Get PDF
    Copyright © 2010 by the BMJ Publishing Group Ltd. All rights reserved.This study was sponsored by Canadian Institute of Health Research (CIHR), and supported by the Community Coalition Concerned about SARS and other community organisations in the great Toronto area

    An alternative theoretical approach to describe planetary systems through a Schrodinger-type diffusion equation

    Full text link
    In the present work we show that planetary mean distances can be calculated with the help of a Schrodinger-type diffusion equation. The obtained results are shown to agree with the observed orbits of all the planets and of the asteroid belt in the solar system, with only three empty states. Furthermore, the equation solutions predict a fundamental orbit at 0.05 AU from solar-type stars, a result confirmed by recent discoveries. In contrast to other similar approaches previously presented in the literature, we take into account the flatness of the solar system, by considering the flat solutions of the Schrodinger-type equation. The model has just one input parameter, given by the mean distance of Mercury.Comment: 6 pages. Version accepted for publication in Chaos, Solitons & Fractal

    Probing the two-scale-factor universality hypothesis by exact rotation symmetry-breaking mechanism

    Full text link
    We probe the two-scale factor universality hypothesis by evaluating, firstly explicitly and analytically at the one-loop order, the loop quantum corrections to the amplitude ratios for O(NN) λϕ4\lambda\phi^{4} scalar field theories with rotation symmetry-breaking in three distinct and independent methods in which the rotation symmetry-breaking mechanism is treated exactly. We show that the rotation symmetry-breaking amplitude ratios turn out to be identical in the three methods and equal to their respective rotation symmetry-breaking ones, although the amplitudes themselves, in general, depend on the method employed and on the rotation symmetry-breaking parameter. At the end, we show that all these results can be generalized, through an inductive process based on a general theorem emerging from the exact calculation, to any loop level and physically interpreted based on symmetry ideas.Comment: 17 pages, 3 figure

    Variations of the Energy of Free Particles in the pp-Wave Spacetimes

    Full text link
    We consider the action of exact plane gravitational waves, or pp-waves, on free particles. The analysis is carried out by investigating the variations of the geodesic trajectories of the particles, before and after the passage of the wave. The initial velocities of the particles are non-vanishing. We evaluate numerically the Kinetic energy per unit mass of the free particles, and obtain interesting, quasi-periodic behaviour of the variations of the Kinetic energy with respect to the width λ\lambda of the gaussian that represents the wave. The variation of the energy of the free particle is expected to be exactly minus the variation of the energy of the gravitational field, and therefore provides an estimation of the local variation of the gravitational energy. The investigation is carried out in the context of short bursts of gravitational waves, and of waves described by normalised gaussians, that yield impulsive waves in a certain limit.Comment: 20 pages, 18 figures, further arguments supporting the localizability of the gravitational energy are presented, published in Univers
    • …
    corecore