904 research outputs found

    The Clinical Obesity Maintenance Model: A Theoretical Framework for Bariatric Psychology.

    Full text link
    Ranked highly in its association with serious medical comorbidities, obesity, a rapidly growing epidemic worldwide, poses a significant socio-economic burden. While bariatric procedures offer the most efficacious treatment for weight loss, a subset of patients risk weight recidivism. Due to the heterogeneity of obesity, it is likely that there are phenotypes or sub-groups of patients that require evidence-based psychological support to produce more sustainable outcomes. So far, however, characteristics of patients have not led to a personalized treatment algorithm for bariatric surgery. Maintenance of weight loss following bariatric surgery requires long-term modification of eating behaviors and physical activity. A recent Clinical Obesity Maintenance Model (COMM) proposed a conceptual framework of salient constructs, including the role of habit, behavioral clusters, emotion dysregulation, mood, health literacy, and executive function as interconnected drivers of obesity maintaining behaviors relevant to the field of bariatric psychology. The primary aim of this concise review is to bring together emerging findings from experimental and epidemiological studies relating to the COMM constructs that may inform the assessment and follow up of bariatric surgery. We also aim to explain the phenotypes that need to be understood and screened prior to bariatric surgery to enable better pre-surgery intervention and optimum post-surgery response

    Structure of sufficient quantum coarse-grainings

    Full text link
    Let H and K be Hilbert spaces and T be a coarse-graining from B(H) to B(K). Assume that density matrices D_1 and D_2 acting on H are given. In the paper the consequences of the existence of a coarse-graining S from B(K) to B(H) satisfying ST(D_1)=D_1 and ST(D_2)=D_2 are given. (This condition means the sufficiency of T for D_1 and D_2.) Sufficiency implies a particular decomposition of the density matrices. This decomposition allows to deduce the exact condition for equality in the strong subadditivity of the von Neumann entropy.Comment: 13 pages, LATE

    Language differences in qualitative research: is meaning lost in translation?

    Get PDF
    This article discusses challenges of language differences in qualitative research, when participants and the main researcher have the same non-English native language and the non-English data lead to an English publication. Challenges of translation are discussed from the perspective that interpretation of meaning is the core of qualitative research. As translation is also an interpretive act, meaning may get lost in the translation process. Recommendations are suggested, aiming to contribute to the best possible representation and understanding of the interpreted experiences of the participants and thereby to the validity of qualitative research

    Domestic ventilation rates, indoor humidity and dust mite allergens : are our homes causing the asthma pandemic?

    Get PDF
    This paper is concerned with historical changes in domestic ventilation rates, relative humidity and the associated risk of house dust mite colonization. A controlled trial evaluated allergen and water vapour control measures on the level of house dust mite (HDM) Der p1 allergen and indoor humidity, concurrently with changes in lung function in 54 subjects who completed the protocol. Mechanical heat recovery ventilation units significantly reduced moisture content in the active group, while HDM allergen reservoirs in carpets and beds were reduced by circa 96%. Self reported health status confirmed a significant clinical improvement in the active group. The study can form the basis for assessing minimum winter ventilation rates that can suppress RH below the critical ambient equilibrium humidity of 60% and thus inhibit dust mite colonization and activity in temperate and maritime in' uenced climatic regions

    Inhibition of Bruton's TK regulates macrophage NF-kappa B and NLRP3 inflammasome activation in metabolic inflammation

    Get PDF
    Background and Purpose: There are no medications currently available to treat metabolic inflammation. Bruton's tyrosine kinase (BTK) is highly expressed in monocytes and macrophages and regulates NF-\u3baB and NLRP3 inflammasome activity; both propagate metabolic inflammation in diet-induced obesity. Experimental Approach: Using an in vivo model of chronic inflammation, high-fat diet (HFD) feeding, in male C57BL/6J mice and in vitro assays in primary murine and human macrophages, we investigated if ibrutinib, an FDA approved BTK inhibitor, may represent a novel anti-inflammatory medication to treat metabolic inflammation. Key Results: HFD-feeding was associated with increased BTK expression and activation, which was significantly correlated with monocyte/macrophage accumulation in the liver, adipose tissue, and kidney. Ibrutinib treatment to HFD-fed mice inhibited the activation of BTK and reduced monocyte/macrophage recruitment to the liver, adipose tissue, and kidney. Ibrutinib treatment to HFD-fed mice decreased the activation of NF-\u3baB and the NLRP3 inflammasome. As a result, ibrutinib treated mice fed HFD had improved glycaemic control through restored signalling by the IRS-1/Akt/GSK-3\u3b2 pathway, protecting mice against the development of hepatosteatosis and proteinuria. We show that BTK regulates NF-\u3baB and the NLRP3 inflammasome specifically in primary murine and human macrophages, the in vivo cellular target of ibrutinib. Conclusion and Implications: We provide \u201cproof of concept\u201d evidence that BTK is a novel therapeutic target for the treatment of diet-induced metabolic inflammation and ibrutinib may be a candidate for drug repurposing as an anti-inflammatory agent for the treatment of metabolic inflammation in T2D and microvascular disease

    Regularity Properties and Pathologies of Position-Space Renormalization-Group Transformations

    Get PDF
    We reconsider the conceptual foundations of the renormalization-group (RG) formalism, and prove some rigorous theorems on the regularity properties and possible pathologies of the RG map. Regarding regularity, we show that the RG map, defined on a suitable space of interactions (= formal Hamiltonians), is always single-valued and Lipschitz continuous on its domain of definition. This rules out a recently proposed scenario for the RG description of first-order phase transitions. On the pathological side, we make rigorous some arguments of Griffiths, Pearce and Israel, and prove in several cases that the renormalized measure is not a Gibbs measure for any reasonable interaction. This means that the RG map is ill-defined, and that the conventional RG description of first-order phase transitions is not universally valid. For decimation or Kadanoff transformations applied to the Ising model in dimension d3d \ge 3, these pathologies occur in a full neighborhood {β>β0,h<ϵ(β)}\{ \beta > \beta_0 ,\, |h| < \epsilon(\beta) \} of the low-temperature part of the first-order phase-transition surface. For block-averaging transformations applied to the Ising model in dimension d2d \ge 2, the pathologies occur at low temperatures for arbitrary magnetic-field strength. Pathologies may also occur in the critical region for Ising models in dimension d4d \ge 4. We discuss in detail the distinction between Gibbsian and non-Gibbsian measures, and give a rather complete catalogue of the known examples. Finally, we discuss the heuristic and numerical evidence on RG pathologies in the light of our rigorous theorems.Comment: 273 pages including 14 figures, Postscript, See also ftp.scri.fsu.edu:hep-lat/papers/9210/9210032.ps.

    Improved analysis of bacterial CGH data beyond the log-ratio paradigm

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Existing methods for analyzing bacterial CGH data from two-color arrays are based on log-ratios only, a paradigm inherited from expression studies. We propose an alternative approach, where microarray signals are used in a different way and sequence identity is predicted using a supervised learning approach.</p> <p>Results</p> <p>A data set containing 32 hybridizations of sequenced versus sequenced genomes have been used to test and compare methods. A ROC-analysis has been performed to illustrate the ability to rank probes with respect to Present/Absent calls. Classification into Present and Absent is compared with that of a gaussian mixture model.</p> <p>Conclusion</p> <p>The results indicate our proposed method is an improvement of existing methods with respect to ranking and classification of probes, especially for multi-genome arrays.</p

    A mathematical framework for critical transitions: normal forms, variance and applications

    Full text link
    Critical transitions occur in a wide variety of applications including mathematical biology, climate change, human physiology and economics. Therefore it is highly desirable to find early-warning signs. We show that it is possible to classify critical transitions by using bifurcation theory and normal forms in the singular limit. Based on this elementary classification, we analyze stochastic fluctuations and calculate scaling laws of the variance of stochastic sample paths near critical transitions for fast subsystem bifurcations up to codimension two. The theory is applied to several models: the Stommel-Cessi box model for the thermohaline circulation from geoscience, an epidemic-spreading model on an adaptive network, an activator-inhibitor switch from systems biology, a predator-prey system from ecology and to the Euler buckling problem from classical mechanics. For the Stommel-Cessi model we compare different detrending techniques to calculate early-warning signs. In the epidemics model we show that link densities could be better variables for prediction than population densities. The activator-inhibitor switch demonstrates effects in three time-scale systems and points out that excitable cells and molecular units have information for subthreshold prediction. In the predator-prey model explosive population growth near a codimension two bifurcation is investigated and we show that early-warnings from normal forms can be misleading in this context. In the biomechanical model we demonstrate that early-warning signs for buckling depend crucially on the control strategy near the instability which illustrates the effect of multiplicative noise.Comment: minor corrections to previous versio

    The impact of loco-regional recurrences on metastatic progression in early-stage breast cancer: a multistate model

    Get PDF
    To study whether the effects of prognostic factors associated with the occurrence of distant metastases (DM) at primary diagnosis change after the incidence of loco-regional recurrences (LRR) among women treated for invasive stage I or II breast cancer. The study population consisted of 3,601 women, enrolled in EORTC trials 10801, 10854, or 10902 treated for early-stage breast cancer. Data were analysed in a multivariate, multistate model by using multivariate Cox regression models, including a state-dependent covariate. The presence of a LRR in itself is a significant prognostic risk factor (HR: 3.64; 95%-CI: 2.02-6.5) for the occurrence of DM. Main prognostic risk factors for a DM are young age at diagnosis (</=40: HR: 1.79; 95%-CI: 1.28-2.51), larger tumour size (HR: 1.58; 95%-CI: 1.35-1.84) and node positivity (HR: 2.00; 95%-CI: 1.74-2.30). Adjuvant chemotherapy is protective for a DM (HR: 0.66; 95%-CI: 0.55-0.80). After the occurrence of a LRR the latter protective effect has disappeared (P = 0.009). The presence of LRR in itself is a significant risk factor for DM. For patients who are at risk of developing LRR, effective local control should be the main target of therapy
    corecore