7 research outputs found

    Simple Parameters from Complete Blood Count Predict In-Hospital Mortality in COVID-19

    Get PDF
    The clinical course of Coronavirus Disease 2019 (COVID-19) is highly heterogenous, ranging from asymptomatic to fatal forms. The identification of clinical and laboratory predictors of poor prognosis may assist clinicians in monitoring strategies and therapeutic decisions

    Decrease of haemoconcentration reliably detects hydrostatic pulmonary oedema in dyspnoeic patients in the emergency department – a machine learning approach

    Full text link
    Background: Haemoglobin variation (ΔHb) induced by fluid transfer through the intestitium has been proposed as a useful tool for detecting hydrostatic pulmonary oedema (HPO). However, its use in the emergency department (ED) setting still needs to be determined. Methods: In this observational retrospective monocentric study, ED patients admitted for acute dyspnoea were enrolled. Hb values were recorded both at ED presentation (T0) and after 4 to 8 h (T1). ΔHb between T1 and T0 (ΔHbT1-T0) was calculated as absolute and relative value. Two investigators, unaware of Hb values, defined the cause of dyspnoea as HPO and non-HPO. ΔHbT1-T0 ability to detect HPO was evaluated. A machine learning approach was used to develop a predictive tool for HPO, by considering the ability of ΔHb as covariate, together with baseline patient characteristics. Results: Seven-hundred-and-six dyspnoeic patients (203 HPO and 503 non-HPO) were enrolled over 19 months. Hb levels were significantly different between HPO and non-HPO patients both at T0 and T1 (p < 0.001). ΔHbT1-T0 were more pronounced in HPO than non-HPO patients, both as relative (-8.2 [-11.2 to -5.6] vs. 0.6 [-2.1 to 3.3] %) and absolute (-1.0 [-1.4 to -0.8] vs. 0.1 [-0.3 to 0.4] g/dL) values (p < 0.001). A relative ΔHbT1-T0 of -5% detected HPO with an area under the receiver operating characteristic curve (AUROC) of 0.901 [0.896-0.906]. Among the considered models, Gradient Boosting Machine showed excellent predictive ability in identifying HPO patients and was used to create a web-based application. ΔHbT1-T0 was confirmed as the most important covariate for HPO prediction. Conclusions: ΔHbT1-T0 in patients admitted for acute dyspnoea reliably identifies HPO in the ED setting. The machine learning predictive tool may represent a performing and clinically handy tool for confirming HPO

    Large-scale plasma analysis revealed new mechanisms and molecules associated with the host response to sars-cov-2

    Full text link
    The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread to nearly every continent, registering over 1,250,000 deaths worldwide. The effects of SARS-CoV-2 on host targets remains largely limited, hampering our understanding of Coronavirus Disease 2019 (COVID-19) pathogenesis and the development of therapeutic strategies. The present study used a comprehensive untargeted metabolomic and lipidomic approach to capture the host response to SARS-CoV-2 infection. We found that several circulating lipids acted as potential biomarkers, such as phosphatidylcholine 14:0_22:6 (area under the curve (AUC) = 0.96), phosphatidylcholine 16:1_22:6 (AUC = 0.97), and phosphatidylethanolamine 18:1_20:4 (AUC = 0.94). Furthermore, triglycerides and free fatty acids, especially arachidonic acid (AUC = 0.99) and oleic acid (AUC = 0.98), were well correlated to the severity of the disease. An untargeted analysis of non-critical COVID-19 patients identified a strong alteration of lipids and a perturbation of phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, aminoacyl-tRNA degradation, arachidonic acid metabolism, and the tricarboxylic acid (TCA) cycle. The severity of the disease was characterized by the activation of gluconeogenesis and the metabolism of porphyrins, which play a crucial role in the progress of the infection. In addition, our study provided further evidence for considering phospholipase A2 (PLA2) activity as a potential key factor in the pathogenesis of COVID-19 and a possible therapeutic target. To date, the present study provides the largest untargeted metabolomics and lipidomics analysis of plasma from COVID-19 patients and control groups, identifying new mechanisms associated with the host response to COVID-19, potential plasma biomarkers, and therapeutic targets

    Simple parameters from complete blood count predict in-hospital mortality in covid-19

    Full text link
    Introduction. The clinical course of Coronavirus Disease 2019 (COVID-19) is highly heterogenous, ranging from asymptomatic to fatal forms. The identification of clinical and laboratory predictors of poor prognosis may assist clinicians in monitoring strategies and therapeutic decisions. Materials and Methods. In this study, we retrospectively assessed the prognostic value of a simple tool, the complete blood count, on a cohort of 664 patients (F 260; 39%, median age 70 (56-81) years) hospitalized for COVID-19 in Northern Italy. We collected demographic data along with complete blood cell count; moreover, the outcome of the hospital in-stay was recorded. Results. At data cut-off, 221/664 patients (33.3%) had died and 453/664 (66.7%) had been discharged. Red cell distribution width (RDW) (χ2 10.4; p < 0:001), neutrophil-to-lymphocyte (NL) ratio (χ2 7.6; p = 0:006), and platelet count (χ2 5.39; p = 0:02), along with age (χ2 87.6; p < 0:001) and gender (χ2 17.3; p < 0:001), accurately predicted in-hospital mortality. Hemoglobin levels were not associated with mortality. We also identified the best cut-off for mortality prediction: a NL ratio > 4:68 was characterized by an odds ratio for in-hospital mortality Ă°ORÞ = 3:40 (2.40-4.82), while the OR for a RDW > 13:7% was 4.09 (2.87-5.83); a platelet count > 166,000/ÎŒL was, conversely, protective (OR: 0.45 (0.32-0.63)). Conclusion. Our findings arise the opportunity of stratifying COVID-19 severity according to simple lab parameters, which may drive clinical decisions about monitoring and treatment
    corecore