55,381 research outputs found

    On empirical cumulant generating functions of code lengths for individual sequences

    Full text link
    We consider the problem of lossless compression of individual sequences using finite-state (FS) machines, from the perspective of the best achievable empirical cumulant generating function (CGF) of the code length, i.e., the normalized logarithm of the empirical average of the exponentiated code length. Since the probabilistic CGF is minimized in terms of the R\'enyi entropy of the source, one of the motivations of this study is to derive an individual-sequence analogue of the R\'enyi entropy, in the same way that the FS compressibility is the individual-sequence counterpart of the Shannon entropy. We consider the CGF of the code-length both from the perspective of fixed-to-variable (F-V) length coding and the perspective of variable-to-variable (V-V) length coding, where the latter turns out to yield a better result, that coincides with the FS compressibility. We also extend our results to compression with side information, available at both the encoder and decoder. In this case, the V-V version no longer coincides with the FS compressibility, but results in a different complexity measure.Comment: 15 pages; submitted for publicatio

    Le lingue letterarie (testi)

    Get PDF

    Le lingue dei lirici (testi)

    Get PDF

    On optimum parameter modulation-estimation from a large deviations perspective

    Full text link
    We consider the problem of jointly optimum modulation and estimation of a real-valued random parameter, conveyed over an additive white Gaussian noise (AWGN) channel, where the performance metric is the large deviations behavior of the estimator, namely, the exponential decay rate (as a function of the observation time) of the probability that the estimation error would exceed a certain threshold. Our basic result is in providing an exact characterization of the fastest achievable exponential decay rate, among all possible modulator-estimator (transmitter-receiver) pairs, where the modulator is limited only in the signal power, but not in bandwidth. This exponential rate turns out to be given by the reliability function of the AWGN channel. We also discuss several ways to achieve this optimum performance, and one of them is based on quantization of the parameter, followed by optimum channel coding and modulation, which gives rise to a separation-based transmitter, if one views this setting from the perspective of joint source-channel coding. This is in spite of the fact that, in general, when error exponents are considered, the source-channel separation theorem does not hold true. We also discuss several observations, modifications and extensions of this result in several directions, including other channels, and the case of multidimensional parameter vectors. One of our findings concerning the latter, is that there is an abrupt threshold effect in the dimensionality of the parameter vector: below a certain critical dimension, the probability of excess estimation error may still decay exponentially, but beyond this value, it must converge to unity.Comment: 26 pages; Submitted to the IEEE Transactions on Information Theor

    Optimum estimation via gradients of partition functions and information measures: a statistical-mechanical perspective

    Full text link
    In continuation to a recent work on the statistical--mechanical analysis of minimum mean square error (MMSE) estimation in Gaussian noise via its relation to the mutual information (the I-MMSE relation), here we propose a simple and more direct relationship between optimum estimation and certain information measures (e.g., the information density and the Fisher information), which can be viewed as partition functions and hence are amenable to analysis using statistical--mechanical techniques. The proposed approach has several advantages, most notably, its applicability to general sources and channels, as opposed to the I-MMSE relation and its variants which hold only for certain classes of channels (e.g., additive white Gaussian noise channels). We then demonstrate the derivation of the conditional mean estimator and the MMSE in a few examples. Two of these examples turn out to be generalizable to a fairly wide class of sources and channels. For this class, the proposed approach is shown to yield an approximate conditional mean estimator and an MMSE formula that has the flavor of a single-letter expression. We also show how our approach can easily be generalized to situations of mismatched estimation.Comment: 21 pages; submitted to the IEEE Transactions on Information Theor

    A statistical-mechanical view on source coding: physical compression and data compression

    Full text link
    We draw a certain analogy between the classical information-theoretic problem of lossy data compression (source coding) of memoryless information sources and the statistical mechanical behavior of a certain model of a chain of connected particles (e.g., a polymer) that is subjected to a contracting force. The free energy difference pertaining to such a contraction turns out to be proportional to the rate-distortion function in the analogous data compression model, and the contracting force is proportional to the derivative this function. Beyond the fact that this analogy may be interesting on its own right, it may provide a physical perspective on the behavior of optimum schemes for lossy data compression (and perhaps also, an information-theoretic perspective on certain physical system models). Moreover, it triggers the derivation of lossy compression performance for systems with memory, using analysis tools and insights from statistical mechanics.Comment: 17 pages, 2 figures; submitted to the Journal of Statistical Mechanics: Theory and Experimen
    corecore