104 research outputs found
A possible experimental determination of from decays
scattering and decays are studied at leading order of
improved chiral perturbation theory. It is shown that high precision experiments at, e.g., DANE should allow for a direct measurement of
the quark mass ratio /.Comment: 9 pages, preprint IPNO-TH 93-17, 2 figures not included, available
upon request, plain Latex, April 199
Perturbative fragmentation
The Berger model of perturbative fragmentation of quarks to pions is improved
by providing an absolute normalization and keeping all terms in a (1-z)
expansion, which makes the calculation valid at all values of fractional pion
momentum z. We also replace the nonrelativistic wave function of a loosely
bound pion by the more realistic procedure of projecting to the light-cone pion
wave function, which in turn is taken from well known models. The full
calculation does not confirm the (1-z)^2 behavior of the fragmentation function
(FF) predicted in for , and only works at very large z>0.95, where it is
in reasonable agreement with phenomenological FFs. Otherwise, we observe quite
a different z-dependence which grossly underestimates data at smaller z. The
disagreement is reduced after the addition of pions from decays of light vector
mesons, but still remains considerable. The process dependent higher twist
terms are also calculated exactly and found to be important at large z and/or
pT.Comment: 10 pages, 8 figure
Thermal nociceptive properties of trigeminal afferent neurons in rats
<p>Abstract</p> <p>Background</p> <p>Although nociceptive afferents innervating the body have been heavily studied form many years, much less attention has been paid to trigeminal afferent biology. In particular, very little is known concerning trigeminal nociceptor responses to heat, and almost nothing in the rat. This study uses a highly controlled and reproducible diode laser stimulator to investigate the activation of trigeminal afferents to noxious skin heating.</p> <p>Results</p> <p>The results of this experiment demonstrate that trigeminal thermonociceptors are distinct from themonociceptors innervating the limbs. Trigeminal nociceptors have considerably slower action potential conduction velocities and lower temperature thresholds than somatic afferent neurons. On the other hand, nociceptors innervating both tissue areas separate into those that respond to short pulse, high rate skin heating and those that respond to long pulse, low rate skin heating.</p> <p>Conclusions</p> <p>This paper provides the first description in the literature of the in vivo properties of thermonociceptors in rats. These finding of two separate populations aligns with the separation between C and A-delta thermonociceptors innervating the paw, but have significant differences in terms of temperature threshold and average conduction velocities. An understanding of the temperature response properties of afferent neurons innervating the paw skin have been critical in many mechanistic discoveries, some leading to new pain therapies. A clear understanding of trigeminal nociceptors may be similarly useful in the investigation of trigeminal pain mechanisms and potential therapies.</p
Production of para-- and orthopositronium at relativistic heavy ion colliders
We consider the ortho-- and parapositronium production in the process Ps where A is a nucleus with the charge number Z. The inclusive cross
section and the energy distribution of the relativistic Ps are calculated which
are of primary interest from the experimental point of view. The accuracy of
the corresponding cross sections is given by omitting terms for the para--Ps and for the ortho--Ps production
where and 16 for the RHIC and the LHC. Within this
accuracy the multiphoton (Coulomb) corrections are taken into account. We show
that the RHIC and the LHC will be Ps factories with a productions rate of about
relativistic Ps per day. The fraction of the ortho--Ps is
expected to be of the same order as that of the para--Ps for Au--Au and Pb--Pb
collisions.Comment: 22 pages, 5 figures, RevTeX, misprint correcte
Direct calculation of the probability of pionium ionization in the target
We performed the first direct calculation of the probability of pionium
(pi+pi- atom) ionization in the target. The dependence of the probability of
pionium ionization in the target as a function of the pionium lifetime is
established. These calculations are of interest of the DIRAC experiment at
CERN, which aims to measure the pionium lifetime with high precision.Comment: 11 pages, 4 figures; submitted to "Physics of Atomic Nuclei"
("Yadernaya Fizika"
Production of the Smallest QED Atom: True Muonium (mu^+ mu^-)
The "true muonium" (mu^+ mu-) and "true tauonium" (tau^+ tau^-) bound states
are not only the heaviest, but also the most compact pure QED systems. The
rapid weak decay of the tau makes the observation of true tauonium difficult.
However, as we show, the production and study of true muonium is possible at
modern electron-positron colliders.Comment: 4 pages, ReVTeX, 4 eps figures; minor wording changes and reordering
of a reference. Version accepted by Phys. Rev. Let
Dynamics of the Pionium with the Density Matrix Formalism
The evolution of pionium, the hydrogen-like atom, while passing
through matter is solved within the density matrix formalism in the first Born
approximation. We compare the influence on the pionium break-up probability
between the standard probabilistic calculations and the more precise picture of
the density matrix formalism accounting for interference effects. We focus our
general result in the particular conditions of the DIRAC experiment at CERN.Comment: 14 pages, 2 figures, submitted to J. Phys. B: At. Mol. Phy
Density Matrix Kinetic Equation Describing a Passage of Fast Atomic Systems Through Matter
The quantum-mechanical consideration of a passage of fast dimesoatoms through
matter is given. A set of quantum-kinetic equations for the density matrix
elements describing their internal state evolution is derived. It is shown that
probabilistic description of internal dynamics of hydrogen-like atoms is
impossible even at sufficiently low energies because of the ``accidental''
degeneracy of their energy levels.Comment: 12 pages, LATEX, submitted to J. Phys.
Ablation of rat TRPV1-expressing Adelta/C-fibers with resiniferatoxin: analysis of withdrawal behaviors, recovery of function and molecular correlates
<p>Abstract</p> <p>Background</p> <p>Ablation of TRPV1-expressing nociceptive fibers with the potent capsaicin analog resiniferatoxin (RTX) results in long lasting pain relief. RTX is particularly adaptable to focal application, and the induced chemical axonopathy leads to analgesia with a duration that is influenced by dose, route of administration, and the rate of fiber regeneration. TRPV1 is expressed in a subpopulation of unmyelinated C- and lightly myelinated Adelta fibers that detect changes in skin temperature at low and high rates of noxious heating, respectively. Here we investigate fiber-type specific behaviors, their time course of recovery and molecular correlates of axon damage and nociception using infrared laser stimuli following an RTX-induced peripheral axonopathy.</p> <p>Results</p> <p>RTX was injected into rat hind paws (mid-plantar) to produce thermal hypoalgesia. An infrared diode laser was used to stimulate Adelta fibers in the paw with a small-diameter (1.6 mm), high-energy, 100 msec pulse, or C-fibers with a wide-diameter (5 mm), long-duration, low-energy pulse. We monitored behavioral responses to indicate loss and regeneration of fibers. At the site of injection, responses to C-fiber stimuli were significantly attenuated for two weeks after 5 or 50 ng RTX. Responses to Adelta stimuli were significantly attenuated for two weeks at the highest intensity stimulus, and for 5 weeks to a less intense Adelta stimulus. Stimulation on the toe, a site distal to the injection, showed significant attenuation of Adelta responses for 7- 8 weeks after 5 ng, or 9-10 weeks after 50 ng RTX. In contrast, responses to C-fiber stimuli exhibited basically normal responses at 5 weeks after RTX. During the period of fiber loss and recovery, molecular markers for nerve regeneration (ATF3 and galanin) are upregulated in the dorsal root ganglia (DRG) when behavior is maximally attenuated, but markers of nociceptive activity (c-Fos in spinal cord and MCP-1 in DRG), although induced immediately after RTX treatment, returned to normal.</p> <p>Conclusion</p> <p>Behavioral recovery following peripheral RTX treatment is linked to regeneration of TRPV1-expressing Adelta and C-fibers and sustained expression of molecular markers. Infrared laser stimulation is a potentially valuable tool for evaluating the behavioral role of Adelta fibers in pain and pain control.</p
Production of relativistic positronium in collisions of photons and electrons with nuclei and atoms
We consider the production of ultrarelativistic positronium (Ps) in and processes where is an atom or a nucleus
with charge . For the photoproduction of para- and ortho-Ps and the
electroproduction of para-Ps we obtain the most complete description compared
with previous works. It includes high order corrections and
polarization effects. The accuracy of the obtained cross sections is determined
by omitted terms of the order of the inverse Ps Lorentz factor squared. The
studied high order multi-photon electroproduction of ortho-Ps dominates for the
collision of electrons with heavy atoms over the bremsstrahlung production from
the electron via a virtual photon proposed by Holvik and Olsen. Our results
complete and correct the studies of those authors.Comment: 19 pages, 9 figures, RevTex; v2: minor corrections for the accuracy
of the results, a discussion of the literature added in a footnote, one
additional reference; v3: diagram of Fig.2 correcte
- …