16 research outputs found

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Methods of Melanoma Detection

    No full text
    Detection and removal of melanoma, before it has metastasized, dramatically improves prognosis and survival. The purpose of this chapter is to (1) summarize current methods of melanoma detection and (2) review state-of-the-art detection methods and technologies that have the potential to reduce melanoma mortality. Current strategies for the detection of melanoma range from population-based educational campaigns and screening to the use of algorithm-driven imaging technologies and performance of assays that identify markers of transformation. This chapter will begin by describing state-of-the-art methods for educating and increasing awareness of at-risk individuals and for performing comprehensive screening examinations. Standard and advanced photographic methods designed to improve reliability and reproducibility of the clinical examination will also be reviewed. Devices that magnify and/or enhance malignant features of individual melanocytic lesions (and algorithms that are available to interpret the results obtained from these devices) will be compared and contrasted. In vivo confocal microscopy and other cellular-level in vivo technologies will be compared to traditional tissue biopsy, and the role of a noninvasive "optical biopsy" in the clinical setting will be discussed. Finally, cellular and molecular methods that have been applied to the diagnosis of melanoma, such as comparative genomic hybridization (CGH), fluorescent in situ hybridization (FISH), and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), will be discussed

    Tubulins from Plants, Fungi, and Protists

    No full text

    Common Chain-Growth Polymers

    No full text
    corecore