73 research outputs found

    Superconductivity at 5 K in potassium doped phenanthrene

    Full text link
    Organic materials are believed to be potential superconductor with high transition temperature (TC). Organic superconductors mainly have two families: the quasi-one dimensional (TMTSF)2X and two dimensional (BEDT-TTF)2X (Ref. 1 and 2), in which TMTSF is tetramethyltetraselenafulvalene (C10H12Se4) and BEDT-TTF or "ET" is bis(ethylenedithio)tetrathiafulvalene (C10H8S8). One key feature of the organic superconductors is that they have {\pi}-molecular orbitals, and the {\pi}-electron can delocalize throughout the crystal giving rise to metallic conductivity due to a {\pi}-orbital overlap between adjacent molecules. The introduction of charge into C60 solids and graphites with {\pi}-electron networks by doping to realize superconductivity has been extensively reported3,4. Very recently, superconductivity in alkali-metal doped picene with {\pi}-electron networks was reported5. Here we report the discovery of superconductivity in potassium doped Phenanthrene with TC~5 K. TC increases with increasing pressure, and the pressure of 1 GPa leads to an increase of 20% in TC, suggesting that the potassium doped phenanthrene shows unconventional superconductivity. Both phenanthrene and picene are polycyclic aromatic hydrocarbons, and contain three and five fused benzene rings, respectively. The ribbon of fused benzene rings is part of graphene. Therefore, the discovery of superconductivity in K3Phenanthrene produces a novel broad class of superconductors consisting of fused hydrocarbon benzene rings with {\pi}-electron networks. The fact that TC increases from 5 K for KxPhenanthrene with three benzene rings to 18 K for Kxpicene with five benzene rings suggests that such organic hydrocarbons with long benzene rings is potential superconductor with high TC.Comment: 20 pages, 3 figures, one supplementary information. submitted to Nature Communication

    The role of epigenetics in renal ageing

    Get PDF
    An ability to separate natural ageing processes from processes specific to morbidities is required to understand the heterogeneity of age-related organ dysfunction. Mechanistic insight into how epigenetic factors regulate ageing throughout the life course, linked to a decline in renal function with ageing, is already proving to be of value in the analyses of clinical and epidemiological cohorts. Noncoding RNAs provide epigenetic regulatory circuits within the kidney, which reciprocally interact with DNA methylation processes, histone modification and chromatin. These interactions have been demonstrated to reflect the biological age and function of renal allografts. Epigenetic factors control gene expression and activity in response to environmental perturbations. They also have roles in highly conserved signalling pathways that modulate ageing, including the mTOR and insulin/insulin-like growth factor signalling pathways, and regulation of sirtuin activity. Nutrition, the gut microbiota, inflammation and environmental factors, including psychosocial and lifestyle stresses, provide potential mechanistic links between the epigenetic landscape of ageing and renal dysfunction. Approaches to modify the renal epigenome via nutritional intervention, targeting the methylome or targeting chromatin seem eminently feasible, although caution is merited owing to the potential for intergenerational and transgenerational effects

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research

    Interactions between kidney disease and diabetes: dangerous liaisons

    Full text link
    • …
    corecore