1,335 research outputs found

    Structure of Extreme Correlated Equilibria: a Zero-Sum Example and its Implications

    Get PDF
    We exhibit the rich structure of the set of correlated equilibria by analyzing the simplest of polynomial games: the mixed extension of matching pennies. We show that while the correlated equilibrium set is convex and compact, the structure of its extreme points can be quite complicated. In finite games the ratio of extreme correlated to extreme Nash equilibria can be greater than exponential in the size of the strategy spaces. In polynomial games there can exist extreme correlated equilibria which are not finitely supported; we construct a large family of examples using techniques from ergodic theory. We show that in general the set of correlated equilibrium distributions of a polynomial game cannot be described by conditions on finitely many moments (means, covariances, etc.), in marked contrast to the set of Nash equilibria which is always expressible in terms of finitely many moments

    Fluid-structure interaction simulation of prosthetic aortic valves : comparison between immersed boundary and arbitrary Lagrangian-Eulerian techniques for the mesh representation

    Get PDF
    In recent years the role of FSI (fluid-structure interaction) simulations in the analysis of the fluid-mechanics of heart valves is becoming more and more important, being able to capture the interaction between the blood and both the surrounding biological tissues and the valve itself. When setting up an FSI simulation, several choices have to be made to select the most suitable approach for the case of interest: in particular, to simulate flexible leaflet cardiac valves, the type of discretization of the fluid domain is crucial, which can be described with an ALE (Arbitrary Lagrangian-Eulerian) or an Eulerian formulation. The majority of the reported 3D heart valve FSI simulations are performed with the Eulerian formulation, allowing for large deformations of the domains without compromising the quality of the fluid grid. Nevertheless, it is known that the ALE-FSI approach guarantees more accurate results at the interface between the solid and the fluid. The goal of this paper is to describe the same aortic valve model in the two cases, comparing the performances of an ALE-based FSI solution and an Eulerian-based FSI approach. After a first simplified 2D case, the aortic geometry was considered in a full 3D set-up. The model was kept as similar as possible in the two settings, to better compare the simulations' outcomes. Although for the 2D case the differences were unsubstantial, in our experience the performance of a full 3D ALE-FSI simulation was significantly limited by the technical problems and requirements inherent to the ALE formulation, mainly related to the mesh motion and deformation of the fluid domain. As a secondary outcome of this work, it is important to point out that the choice of the solver also influenced the reliability of the final results

    Engaging diverse underserved communities to bridge the mammography divide

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Breast cancer screening continues to be underutilized by the population in general, but is particularly underutilized by traditionally underserved minority populations. Two of the most at risk female minority groups are American Indians/Alaska Natives (AI/AN) and Latinas. American Indian women have the poorest recorded 5-year cancer survival rates of any ethnic group while breast cancer is the number one cause of cancer mortality among Latina women. Breast cancer screening rates for both minority groups are near or at the lowest among all racial/ethnic groups. As with other health screening behaviors, women may intend to get a mammogram but their intentions may not result in initiation or follow through of the examination process. An accumulating body of research, however, demonstrates the efficacy of developing 'implementation intentions' that define when, where, and how a specific behavior will be performed. The formulation of intended steps in addition to addressing potential barriers to test completion can increase a person's self-efficacy, operationalize and strengthen their intention to act, and close gaps between behavioral intention and completion. To date, an evaluation of the formulation of implementation intentions for breast cancer screening has not been conducted with minority populations.</p> <p>Methods/Design</p> <p>In the proposed program, community health workers will meet with rural-dwelling Latina and American Indian women one-on-one to educate them about breast cancer and screening and guide them through a computerized and culturally tailored "implementation intentions" program, called <it>Healthy Living Kansas - Breast Health</it>, to promote breast cancer screening utilization. We will target Latina and AI/AN women from two distinct rural Kansas communities. Women attending community events will be invited by CHWs to participate and be randomized to either a mammography "implementation intentions" (<b>MI</b><sup><b>2</b></sup>) intervention or a comparison general breast cancer prevention informational intervention (<b>C</b>). CHWs will be armed with notebook computers loaded with our Healthy Living Kansas - Breast Health program and guide their peers through the program. Women in the <b>MI</b><sup><b>2 </b></sup>condition will receive assistance with operationalizing their screening intentions and identifying and addressing their stated screening barriers with the goal of guiding them toward accessing screening services near their community. Outcomes will be evaluated at 120-days post randomization via self-report and will include mammography utilization status, barriers, and movement along a behavioral stages of readiness to screen model.</p> <p>Discussion</p> <p>This highly innovative project will be guided and initiated by AI/AN and Latina community members and will test the practical application of emerging behavioral theory among minority persons living in rural communities.</p> <p>Trial Registration</p> <p>ClinicalTrials (NCT): <a href="http://www.clinicaltrials.gov/ct2/show/NCT01267110">NCT01267110</a></p

    The role of agonist and antagonist muscles in explaining isometric knee extension torque variation with hip joint angle.

    Get PDF
    PURPOSE: The biarticular rectus femoris (RF), operating on the ascending limb of the force-length curve, produces more force at longer lengths. However, experimental studies consistently report higher knee extension torque when supine (longer RF length) compared to seated (shorter RF length). Incomplete activation in the supine position has been proposed as the reason for this discrepancy, but differences in antagonistic co-activation could also be responsible due to altered hamstrings length. We examined the role of agonist and antagonist muscles in explaining the isometric knee extension torque variation with changes in hip joint angle. METHOD: Maximum voluntary isometric knee extension torque (joint MVC) was recorded in seated and supine positions from nine healthy males (30.2 ± 7.7 years). Antagonistic torque was estimated using EMG and added to the respective joint MVC (corrected MVC). Submaximal tetanic stimulation quadriceps torque was also recorded. RESULT: Joint MVC was not different between supine (245 ± 71.8 Nm) and seated (241 ± 69.8 Nm) positions and neither was corrected MVC (257 ± 77.7 and 267 ± 87.0 Nm, respectively). Antagonistic torque was higher when seated (26 ± 20.4 Nm) than when supine (12 ± 7.4 Nm). Tetanic torque was higher when supine (111 ± 31.9 Nm) than when seated (99 ± 27.5 Nm). CONCLUSION: Antagonistic co-activation differences between hip positions do not account for the reduced MVC in the supine position. Rather, reduced voluntary knee extensor muscle activation in that position is the major reason for the lower MVC torque when RF is lengthened (hip extended). These findings can assist standardising muscle function assessment and improving musculoskeletal modelling applications

    Measurement of the branching fraction and CP content for the decay B(0) -> D(*+)D(*-)

    Get PDF
    This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APS.We report a measurement of the branching fraction of the decay B0→D*+D*- and of the CP-odd component of its final state using the BABAR detector. With data corresponding to an integrated luminosity of 20.4  fb-1 collected at the Υ(4S) resonance during 1999–2000, we have reconstructed 38 candidate signal events in the mode B0→D*+D*- with an estimated background of 6.2±0.5 events. From these events, we determine the branching fraction to be B(B0→D*+D*-)=[8.3±1.6(stat)±1.2(syst)]×10-4. The measured CP-odd fraction of the final state is 0.22±0.18(stat)±0.03(syst).This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation

    Search for rare quark-annihilation decays, B --> Ds(*) Phi

    Full text link
    We report on searches for B- --> Ds- Phi and B- --> Ds*- Phi. In the context of the Standard Model, these decays are expected to be highly suppressed since they proceed through annihilation of the b and u-bar quarks in the B- meson. Our results are based on 234 million Upsilon(4S) --> B Bbar decays collected with the BABAR detector at SLAC. We find no evidence for these decays, and we set Bayesian 90% confidence level upper limits on the branching fractions BF(B- --> Ds- Phi) Ds*- Phi)<1.2x10^(-5). These results are consistent with Standard Model expectations.Comment: 8 pages, 3 postscript figues, submitted to Phys. Rev. D (Rapid Communications

    Measurement of D-s(+) and D-s(*+) production in B meson decays and from continuum e(+)e(-) annihilation at √s=10.6 GeV

    Get PDF
    This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APSNew measurements of Ds+ and Ds*+ meson production rates from B decays and from qq̅ continuum events near the Υ(4S) resonance are presented. Using 20.8 fb-1 of data on the Υ(4S) resonance and 2.6 fb-1 off-resonance, we find the inclusive branching fractions B(B⃗Ds+X)=(10.93±0.19±0.58±2.73)% and B(B⃗Ds*+X)=(7.9±0.8±0.7±2.0)%, where the first error is statistical, the second is systematic, and the third is due to the Ds+→φπ+ branching fraction uncertainty. The production cross sections σ(e+e-→Ds+X)×B(Ds+→φπ+)=7.55±0.20±0.34pb and σ(e+e-→Ds*±X)×B(Ds+→φπ+)=5.8±0.7±0.5pb are measured at center-of-mass energies about 40 MeV below the Υ(4S) mass. The branching fractions ΣB(B⃗Ds(*)+D(*))=(5.07±0.14±0.30±1.27)% and ΣB(B⃗Ds*+D(*))=(4.1±0.2±0.4±1.0)% are determined from the Ds(*)+ momentum spectra. The mass difference m(Ds+)-m(D+)=98.4±0.1±0.3MeV/c2 is also measured.This work was supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the Swiss NSF, A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation

    Ammonium-Acetate Is Sensed by Gustatory and Olfactory Neurons in Caenorhabditis elegans

    Get PDF
    Background: Caenorhabditis elegans chemosensation has been successfully studied using behavioral assays that treat detection of volatile and water soluble chemicals as separate senses, analogous to smell and taste. However, considerable ambiguity has been associated with the attractive properties of the compound ammonium-acetate (NH 4Ac). NH 4Ac has been used in behavioral assays both as a chemosensory neutral compound and as an attractant. Methodology/Main Findings: Here we show that over a range of concentrations NH4Ac can be detected both as a water soluble attractant and as an odorant, and that ammonia and acetic acid individually act as olfactory attractants. We use genetic analysis to show that NaCl and NH4Ac sensation are mediated by separate pathways and that ammonium sensation depends on the cyclic nucleotide gated ion channel TAX-2/TAX-4, but acetate sensation does not. Furthermore we show that sodium-acetate (NaAc) and ammonium-chloride (NH4Cl) are not detected as Na + and Cl 2 specific stimuli, respectively. Conclusions/Significance: These findings clarify the behavioral response of C. elegans to NH4Ac. The results should have an impact on the design and interpretation of chemosensory experiments studying detection and adaptation to soluble compounds in the nematode Caenorhabditis elegans

    Crystal Structure of Outer Membrane Protein NMB0315 from Neisseria meningitidis

    Get PDF
    NMB0315 is an outer membrane protein of Neisseria meningitidis serogroup B (NMB) and a potential candidate for a broad-spectrum vaccine against meningococcal disease. The crystal structure of NMB0315 was solved by single-wavelength anomalous dispersion (SAD) at a resolution of 2.4 Ã… and revealed to be a lysostaphin-type peptidase of the M23 metallopeptidase family. The overall structure consists of three well-separated domains and has no similarity to any previously published structure. However, only the topology of the carboxyl-terminal domain is highly conserved among members of this family, and this domain is a zinc-dependent catalytic unit. The amino-terminal domain of the structure blocks the substrate binding pocket in the carboxyl-terminal domain, indicating that the wild-type full-length protein is in an inactive conformational state. Our studies improve the understanding of the catalytic mechanism of M23 metallopeptidases
    • …
    corecore