57 research outputs found

    Temperature influence on DXA measurements: bone mineral density acquisition in frozen and thawed human femora

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Determining bone mineral density (BMD) with dual-energy x-ray absorptiometry (DXA) is an established and widely used method that is also applied prior to biomechanical testing. However, DXA is affected by a number of factors. In order to delay decompositional processes, human specimens for biomechanical studies are usually stored at about -20°C; similarly, bone mineral density measurements are usually performed in the frozen state. The aim of our study was to investigate the influence of bone temperature on the measured bone mineral density.</p> <p>Methods</p> <p>Using DXA, bone mineral density measurements were taken in 19 fresh-frozen human femora, in the frozen and the thawed state. Water was used to mimic the missing soft tissue around the specimens. Measurements were taken with the specimens in standardized internal rotation. Total-BMD and single-BMD values of different regions of interest were used for evaluation.</p> <p>Results</p> <p>Fourteen of the 19 specimens showed a decrease in BMD after thawing. The measured total-BMD of the frozen specimens was significantly (1.4%) higher than the measured BMD of the thawed specimens.</p> <p>Conclusion</p> <p>Based on our findings we recommend that the measurement of bone density, for example prior to biomechanical testing, should be standardized to thawed or frozen specimens. Temperature should not be changed during measurements. When using score systems for data interpretation (e.g. T- or Z-score), BMD measurements should be performed only on thawed specimens.</p

    Biomechanical evaluation of fixation of comminuted olecranon fractures: one-third tubular versus locking compression plating

    Get PDF
    New concepts in plate fixation have led to an evolution in plate design for olecranon fractures. The purpose of this study was to compare the stiffness and strength of locking compression plate (LCP) fixation to one-third tubular plate fixation in a cadaveric comminuted olecranon fracture model with a standardised osteotomy. Five matched pairs of cadaveric elbows were randomly assigned for fixation by either a contoured LCP combined with an intramedullary screw and unicortical locking screws or a one-third tubular plate combined with bicortical screws. Construct stiffness was measured by subjecting the specimens to cyclic loading while measuring gapping at the osteotomy site. Construct strength was measured by subjecting specimens to ramp load until failure. There was no significant difference in fixation stiffness and strength between the two fixation methods. All failures consisted of failure of the bone and not of the hardware. Contoured LCP and intramedullary screw fixation can be used as an alternative treatment method for comminuted olecranon fractures as its stiffness and strength were not significantly different from a conventional plating techniqu

    Is tension band wiring technique the "gold standard" for the treatment of olecranon fractures? A long term functional outcome study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tension band wiring (TBW) remains the most common operative technique for the internal fixation of olecranon fractures despite the potential occurrence of subjective complaints due to subcutaneous position of the hardware. Aim of this long term retrospective study was to evaluate the elbow function and the patient-rated outcome after TBW fixation of olecranon fractures.</p> <p>Methods</p> <p>We reviewed 62 patients (33 men and 29 women) with an average age of 48.6 years (range, 18–85 years) who underwent TBW osteosynthesis for isolated olecranon fractures. All patients were assessed both clinically with measurement of flexion-extension and pronation-supination arcs and radiologically with elbow X-Rays. Functional outcome was estimated using the Mayo Elbow Performance Score (MEPS), Visual Analogue Scale (VAS) subjective pain score and VAS patient satisfaction score. Follow up: 6–13 years (average 8.2 years).</p> <p>Results</p> <p>There was a higher prevalence of fractures among men until the 5th decade of life and among women in elderly (p = 0.032). Slip or simple fall onto the arm was the main mechanism of injury for 38 fractures (61.3%) while high energy trauma, such as fall from a height (> 2 m) or road accident, was reported in 24 fractures (38.7%). Hardware removal performed in 51 patients (82.3%) but 34 of them (66.6% of removals) were still complaining for mild pain during daily activities. The incidence of pin migration and loosening was not statistically decreased when penetration of the anterior ulnar cortex was accomplished (p = 0.304). Supination was more often affected than pronation (p = 0.027). According to MEPS, 53 patients (85.5%) had a good to excellent result, 6 (9.7%) fair and 3 (4.8%) poor result. The average satisfaction rating was 9.3 out of 10 (range, 6–10) with 31 patients (50%) to remain completely satisfied from the final result. Degenerative changes recorded in 30 elbows (48.4%). However, no correlation could be found between radiographic findings and MEPS (p = 0.073).</p> <p>Conclusion</p> <p>Tension band wiring fixation remains the "gold standard" for the treatment of displaced and minimally comminuted olecranon fractures. In long term, low levels of pain may be evident regardless of whether the metalware is removed and degenerative changes have been developed.</p

    Treatment of distal humeral fractures using conventional implants. Biomechanical evaluation of a new implant configuration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the face of costly fixation hardware with varying performance for treatment of distal humeral fractures, a novel technique (U-Frame) is proposed using conventional implants in a 180° plate arrangement. In this in-vitro study the biomechanical stability of this method was compared with the established technique which utilizes angular stable locking compression plates (LCP) in a 90° configuration.</p> <p>Methods</p> <p>An unstable distal 3-part fracture (AO 13-C2.3) was created in eight pairs of human cadaveric humeri. All bone pairs were operated with either the "Frame" technique, where two parallel plates are distally interconnected, or with the LCP technique. The specimens were cyclically loaded in simulated flexion and extension of the arm until failure of the construct occurred. Motion of all fragments was tracked by means of optical motion capturing. Construct stiffness and cycles to failure were identified for all specimens.</p> <p>Results</p> <p>Compared to the LCP constructs, the "Frame" technique revealed significant higher construct stiffness in extension of the arm (P = 0.01). The stiffness in flexion was not significantly different (P = 0.16). Number of cycles to failure was found significantly larger for the "Frame" technique (P = 0.01).</p> <p>Conclusions</p> <p>In an in-vitro context the proposed method offers enhanced biomechanical stability and at the same time significantly reduces implant costs.</p
    corecore