11 research outputs found

    GlyT2+ Neurons in the Lateral Cerebellar Nucleus

    Get PDF
    The deep cerebellar nuclei (DCN) are a major hub in the cerebellar circuitry but the functional classification of their neurons is incomplete. We have previously characterized three cell groups in the lateral cerebellar nucleus: large non-GABAergic neurons and two groups of smaller neurons, one of which express green fluorescence protein (GFP) in a GAD67/GFP mouse line and is therefore GABAergic. However, as a substantial number of glycinergic and glycine/GABA co-expressing neurons have been described in the DCN, this classification needed to be refined by considering glycinergic neurons. To this end we took advantage of a glycine transporter isoform 2 (GlyT2)-eGFP mouse line that allows identification of GlyT2-expressing, presumably glycinergic neurons in living cerebellar slices and compared their electrophysiological properties with previously described DCN neuron populations. We found two electrophysiologically and morphologically distinct sets of GlyT2-expressing neurons in the lateral cerebellar nucleus. One of them showed electrophysiological similarity to the previously characterized GABAergic cell group. The second GlyT2+ cell population, however, differed from all other so far described neuron types in DCN in that the cells (1) are intrinsically silent in slices and only fire action potentials upon depolarizing current injection and (2) have a projecting axon that was often seen to leave the DCN and project in the direction of the cerebellar cortex. Presence of this so far undescribed DCN neuron population in the lateral nucleus suggests a direct inhibitory pathway from the DCN to the cerebellar cortex

    Network simulations to study seed exchange for agrobiodiversity conservation

    No full text
    International audienceCrop diversity is essential for sustainable development because diverse crops cope better with disease and climate change. A way to maintain crop diversity is to sustain seed exchange among farmers. Network simulations help in establishing which network properties promote crop diversity conservation. Here, we modelled the likelihood that an introduced crop variety will spread in a seed exchange network. The network model is based on published data on a directed network of barley seed flows in seven villages of Northern Ethiopia. Results show that the number of households that can be reached when introducing a new variety depends on the number of outgoing links of the household that first received the new variety. The distribution of the number of both incoming and outgoing links shows a departure from a normal distribution. This trend is explained by the presence of a minority of highly connected households and of a majority of weakly connected households. For the whole network, there is no significant correlation between the number of incoming and outgoing links of households. The findings explain the common observation that individual farmers do not cultivate all varieties present in a seed system. Absence of reciprocal exchange makes such networks less vulnerable to wholesale displacement of farmer varieties by improved ones
    corecore