311 research outputs found

    Human Neural Stem Cells Differentiate and Promote Locomotor Recovery in an Early Chronic Spinal coRd Injury NOD-scid Mouse Model

    Get PDF
    Traumatic spinal cord injury (SCI) results in partial or complete paralysis and is characterized by a loss of neurons and oligodendrocytes, axonal injury, and demyelination/dysmyelination of spared axons. Approximately 1,250,000 individuals have chronic SCI in the U.S.; therefore treatment in the chronic stages is highly clinically relevant. Human neural stem cells (hCNS-SCns) were prospectively isolated based on fluorescence-activated cell sorting for a CD133(+) and CD24(-/lo) population from fetal brain, grown as neurospheres, and lineage restricted to generate neurons, oligodendrocytes and astrocytes. hCNS-SCns have recently been transplanted sub-acutely following spinal cord injury and found to promote improved locomotor recovery. We tested the ability of hCNS-SCns transplanted 30 days post SCI to survive, differentiate, migrate, and promote improved locomotor recovery.hCNS-SCns were transplanted into immunodeficient NOD-scid mice 30 days post spinal cord contusion injury. hCNS-SCns transplanted mice demonstrated significantly improved locomotor recovery compared to vehicle controls using open field locomotor testing and CatWalk gait analysis. Transplanted hCNS-SCns exhibited long-term engraftment, migration, limited proliferation, and differentiation predominantly to oligodendrocytes and neurons. Astrocytic differentiation was rare and mice did not exhibit mechanical allodynia. Furthermore, differentiated hCNS-SCns integrated with the host as demonstrated by co-localization of human cytoplasm with discrete staining for the paranodal marker contactin-associated protein.The results suggest that hCNS-SCns are capable of surviving, differentiating, and promoting improved locomotor recovery when transplanted into an early chronic injury microenvironment. These data suggest that hCNS-SCns transplantation has efficacy in an early chronic SCI setting and thus expands the "window of opportunity" for intervention

    Influence of postpartum onset on the course of mood disorders

    Get PDF
    BACKGROUND: To ascertain the impact of postpartum onset (PPO) on the subsequent time course of mood disorders. METHODS: This retrospective study compared per year rates of excited (manic or mixed) and depressive episodes between fifty-five women with bipolar (N = 22) or major depressive (N = 33) disorders with first episode occurring postpartum (within four weeks after childbirth according to DSM-IV definition) and 218 non-postpartum onset (NPPO) controls. Such patients had a traceable illness course consisting of one or more episodes alternating with complete symptom remission and no additional diagnoses of axis I disorders, mental retardation or brain organic diseases. A number of variables reported to influence the course of mood disorders were controlled for as possible confounding factors RESULTS: Bipolar women with postpartum onset disorder had fewer excited episodes (p = 0.005) and fewer episodes of both polarities (p = 0.005) compared to non-postpartum onset subjects. No differences emerged in the rates of depressive episodes. All patients who met criteria for rapid cycling bipolar disorder (7 out of 123) were in the NPPO group. Among major depressives, PPO patients experienced fewer episodes (p = 0.016). With respect to clinical and treatment features, PPO-MDD subjects had less personality disorder comorbidity (p = 0.023) and were less likely to be on maintenance treatment compared to NPPO comparison subjects (p = 0.002) CONCLUSION: Such preliminary findings suggest that PPO mood disorders may be characterized by a less recurrent time course. Future research in this field should elucidate the role of comorbid personality disorders and treatment. Moreover it should clarify whether PPO disorders are also associated with a more positive outcome in terms of social functioning and quality of life

    Suicide risk in schizophrenia: learning from the past to change the future

    Get PDF
    Suicide is a major cause of death among patients with schizophrenia. Research indicates that at least 5–13% of schizophrenic patients die by suicide, and it is likely that the higher end of range is the most accurate estimate. There is almost total agreement that the schizophrenic patient who is more likely to commit suicide is young, male, white and never married, with good premorbid function, post-psychotic depression and a history of substance abuse and suicide attempts. Hopelessness, social isolation, hospitalization, deteriorating health after a high level of premorbid functioning, recent loss or rejection, limited external support, and family stress or instability are risk factors for suicide in patients with schizophrenia. Suicidal schizophrenics usually fear further mental deterioration, and they experience either excessive treatment dependence or loss of faith in treatment. Awareness of illness has been reported as a major issue among suicidal schizophrenic patients, yet some researchers argue that insight into the illness does not increase suicide risk. Protective factors play also an important role in assessing suicide risk and should also be carefully evaluated. The neurobiological perspective offers a new approach for understanding self-destructive behavior among patients with schizophrenia and may improve the accuracy of screening schizophrenics for suicide. Although, there is general consensus on the risk factors, accurate knowledge as well as early recognition of patients at risk is still lacking in everyday clinical practice. Better knowledge may help clinicians and caretakers to implement preventive measures. This review paper is the results of a joint effort between researchers in the field of suicide in schizophrenia. Each expert provided a brief essay on one specific aspect of the problem. This is the first attempt to present a consensus report as well as the development of a set of guidelines for reducing suicide risk among schizophenia patients

    Measurement of the W±Z boson pair-production cross section in pp collisions at √s=13TeV with the ATLAS detector

    Get PDF
    published_or_final_versio

    Anatomy of the sign-problem in heavy-dense QCD

    Get PDF
    QCD at finite densities of heavy quarks is investigated using the density-of-states method. The phase factor expectation value of the quark determinant is calculated to unprecedented precision as a function of the chemical potential. Results are validated using those from a reweighting approach where the latter can produce a significant signalto-noise ratio. We confirm the particle–hole symmetry at low temperatures, find a strong sign problem at intermediate values of the chemical potential, and an inverse Silver Blaze feature for chemical potentials close to the onset value: here, the phase-quenched theory underestimates the density of the full theory

    Charged-particle distributions at low transverse momentum in √s=13 13 TeV pp interactions measured with the ATLAS detector at the LHC

    Get PDF
    Measurements of distributions of charged particles produced in proton–proton collisions with a centre-of-mass energy of 13 TeV are presented. The data were recorded by the ATLAS detector at the LHC and correspond to an integrated luminosity of 151 μb −1 μb−1 . The particles are required to have a transverse momentum greater than 100 MeV and an absolute pseudorapidity less than 2.5. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on multiplicity are measured in events containing at least two charged particles satisfying the above kinematic criteria. The results are corrected for detector effects and compared to the predictions from several Monte Carlo event generators

    Measurement of the inelastic proton-proton cross section at √s=13 TeV with the ATLAS detector at the LHC

    Get PDF
    This Letter presents a measurement of the inelastic proton-proton cross section using 60  μb −1 of pp collisions at a center-of-mass energy √s of 13 TeV with the ATLAS detector at the LHC. Inelastic interactions are selected using rings of plastic scintillators in the forward region (2.0710 −6 , where M X is the larger invariant mass of the two hadronic systems separated by the largest rapidity gap in the event. In this ξ range the scintillators are highly efficient. For diffractive events this corresponds to cases where at least one proton dissociates to a system with M X >13  GeV . The measured cross section is compared with a range of theoretical predictions. When extrapolated to the full phase space, a cross section of 78.1±2.9  mb is measured, consistent with the inelastic cross section increasing with center-of-mass energy

    Measurement of W+W− production in association with one jet in proton–proton collisions at sqrt(s) = 8TeV with the ATLAS detector

    Get PDF
    The production of W boson pairs in association with one jet in pp collisions at View the MathML sources=8 TeV is studied using data corresponding to an integrated luminosity of 20.3 fb−1 collected by the ATLAS detector during 2012 at the CERN Large Hadron Collider. The cross section is measured in a fiducial phase-space region defined by the presence of exactly one electron and one muon, missing transverse momentum and exactly one jet with a transverse momentum above 25 GeV and a pseudorapidity of |η|<4.5|η|<4.5. The leptons are required to have opposite electric charge and to pass transverse momentum and pseudorapidity requirements. The fiducial cross section is found to be View the MathML sourceσWWfid,1-jet=136±6(stat)±14(syst)±3(lumi) fb. In combination with a previous measurement restricted to leptonic final states with no associated jets, the fiducial cross section of WW production with zero or one jet is measured to be View the MathML sourceσWWfid,≤1-jet=511±9(stat)±26(syst)±10(lumi) fb. The ratio of fiducial cross sections in final states with one and zero jets is determined to be 0.36±0.050.36±0.05. Finally, a total cross section extrapolated from the fiducial measurement of WW production with zero or one associated jet is reported. The measurements are compared to theoretical predictions and found in good agreement

    Search for pair production of Higgs bosons in the bb¯bb¯ final state using proton-proton collisions at √s=13  TeV with the ATLAS detector

    Get PDF
    A search for Higgs-boson pair production in the bb ¯ bb ¯ final state is carried out with 3.2  fb −1 of proton-proton collision data collected at s √ =13  TeV with the ATLAS detector. The data are consistent with the estimated background and are used to set upper limits on the production cross section of Higgs-boson pairs times branching ratio to bb ¯ bb ¯ for both nonresonant and resonant production. In the case of resonant production of Kaluza-Klein gravitons within the Randall-Sundrum model, upper limits in the 24 to 91 fb range are obtained for masses between 600 and 3000 GeV, at the 95% confidence level. The production cross section times branching ratio for nonresonant Higgs-boson pairs is also constrained to be less than 1.22 pb, at the 95% confidence level

    Combined measurement of differential and total cross sections in the H → γγ and the H → ZZ* → 4ℓ decay channels at s=13 TeV with the ATLAS detector

    Get PDF
    A combined measurement of differential and inclusive total cross sections of Higgs boson production is performed using 36.1 fb−1 of 13 TeV proton–proton collision data produced by the LHC and recorded by the ATLAS detector in 2015 and 2016. Cross sections are obtained from measured H→γγ and H→ZZ*(→4ℓ event yields, which are combined taking into account detector efficiencies, resolution, acceptances and branching fractions. The total Higgs boson production cross section is measured to be 57.0−5.9 +6.0 (stat.) −3.3 +4.0 (syst.) pb, in agreement with the Standard Model prediction. Differential cross-section measurements are presented for the Higgs boson transverse momentum distribution, Higgs boson rapidity, number of jets produced together with the Higgs boson, and the transverse momentum of the leading jet. The results from the two decay channels are found to be compatible, and their combination agrees with the Standard Model predictions
    corecore