9 research outputs found

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Ontogenetic vertebral growth patterns in the basking shark <i>Cetorhinus maximus</i>

    No full text
    Age and growth of the basking shark Cetorhinus maximus (Gunnerus) was examined using vertebral samples from 13 females (261 to 856 cm total length [TL]), 16 males (311 to 840 cm TL) and 11 specimens of unknown sex (376 to 853 cm TL). Vertebral samples were obtained worldwide from museums and institutional and private collections. Examination of multiple vertebrae from along the vertebral column of 10 specimens indicated that vertebral morphology and band pair (alternating opaque and translucent bands) counts changed dramatically along an individual column. Smaller sharks had similar band pair counts along the length of the vertebral column while large sharks had a difference of up to 24 band pairs between the highest and lowest count along the column. Our evidence indicates that band pair deposition may be related to growth and not time in this species and thus the basking shark cannot be directly aged using vertebral band pair counts

    Spatial and ontogenetic variation in growth of nursery-bound juvenile lemon sharks, Negaprion brevirostris: a comparison of two age-assigning techniques

    No full text
    We compared growth rates of the lemon shark, Negaprion brevirostris, from Bimini, Bahamas and the Marquesas Keys (MK), Florida using data obtained in a multi-year annual census. We marked new neonate and juvenile sharks with unique electronic identity tags in Bimini and in the MK we tagged neonate and juvenile sharks. Sharks were tagged with tiny, subcutaneous transponders, a type of tagging thought to cause little, if any disruption to normal growth patterns when compared to conventional external tagging. Within the first 2 years of this project, no age data were recorded for sharks caught for the first time in Bimini. Therefore, we applied and tested two methods of age analysis: ( 1) a modified 'minimum convex polygon' method and ( 2) a new age-assigning method, the 'cut-off technique'. The cut-off technique proved to be the more suitable one, enabling us to identify the age of 134 of the 642 previously unknown aged sharks. This maximised the usable growth data included in our analysis. Annual absolute growth rates of juvenile, nursery-bound lemon sharks were almost constant for the two Bimini nurseries and can be best described by a simple linear model ( growth data was only available for age-0 sharks in the MK). Annual absolute growth for age-0 sharks was much greater in the MK than in either the North Sound (NS) and Shark Land (SL) at Bimini. Growth of SL sharks was significantly faster during the first 2 years of life than of the sharks in the NS population. However, in MK, only growth in the first year was considered to be reliably estimated due to low recapture rates. Analyses indicated no significant differences in growth rates between males and females for any area
    corecore