9 research outputs found

    Magnetic and Characterization Studies of CoO/Co3O4 Nanocomposite

    No full text
    CoO/Co3O4 nanoparticles (NPs) were synthesized by using a fresh egg white-assisted combustion method which acts as a new approach for green synthesis of this composite. This method was carried out by the direct heat of cobalt precursor with egg white at low temperature for very short period. In fact, this route is a novel, cheap and appropriate technique yielding nanoparticle-based materials. CoO/Co3O4 nanoparticles were characterized by examining the structure and identifying the elements and determining the morphology via XRD, FTIR, SEM, EDS and TEM techniques. The sample magnetic observations were measured through the use of a vibrating sample magnetometer (VSM). The results of XRD, EDS, SEM and TEM confirmed the positive synthesis of the cubic CoO/Co3O4 NPs with sponge crystals which proceed. For the as synthesized composite, 57.75 m2/g, 0.0148 cc/g and 10.31 nm were identified to be the SBET, Vp and È“, respectively. The cobalt oxide particles in their nature were polycrystalline, and the crystallite sizes varied from 10 to 20 nm. The magnetic measurement showed that the prepared nanocomposite displays room temperature ferromagnetism with an optimum value, 3.45 emu/g, of saturation magnetization

    Biosynthesis, Physicochemical and Magnetic Properties of Inverse Spinel Nickel Ferrite System

    No full text
    Nanosized Ni ferrite has been prepared by an ecofriendly green synthesis approach based on the self-combustion method. In this route, the egg white as a green fuel was employed with two different amounts (3 and 10 mL). The XRD results display the formation of a stoichiometric NiFe2O4-type inverse spinel structure with a lattice parameter located at 0.8284 nm and 0.8322 nm. Additionally, the nickel ferrites’ typical crystallite size, as synthesized, ranged between 4 and 18 nm. Indicating the development of ferrite material, FTIR analysis shows two distinctive vibrational modes around 600 cm−1 and 400 cm−1. TEM measurements show the formation of nanosized particles with semispherical-type structure and some agglomerations. As the egg white concentration rises, the surface area, total pore volume, and mean pore radius of the material, as prepared, all decrease, and according to the surface area parameters discovered using BET analysis. Based on VSM analysis, the values of saturation magnetization are 6.6589 emu/g and 37.727 emu/g, whereas the coercivity are 159.15 G and 113.74 G. The as-synthesized Ni ferrites fit into the pseudo-single domain predicated by the squareness values (0.1526 and 0.1824). It is mentioned that increasing the egg white content would promote the magnetization of NiFe2O4

    Biosynthesis, Physicochemical and Magnetic Properties of Inverse Spinel Nickel Ferrite System

    No full text
    Nanosized Ni ferrite has been prepared by an ecofriendly green synthesis approach based on the self-combustion method. In this route, the egg white as a green fuel was employed with two different amounts (3 and 10 mL). The XRD results display the formation of a stoichiometric NiFe2O4-type inverse spinel structure with a lattice parameter located at 0.8284 nm and 0.8322 nm. Additionally, the nickel ferrites’ typical crystallite size, as synthesized, ranged between 4 and 18 nm. Indicating the development of ferrite material, FTIR analysis shows two distinctive vibrational modes around 600 cm−1 and 400 cm−1. TEM measurements show the formation of nanosized particles with semispherical-type structure and some agglomerations. As the egg white concentration rises, the surface area, total pore volume, and mean pore radius of the material, as prepared, all decrease, and according to the surface area parameters discovered using BET analysis. Based on VSM analysis, the values of saturation magnetization are 6.6589 emu/g and 37.727 emu/g, whereas the coercivity are 159.15 G and 113.74 G. The as-synthesized Ni ferrites fit into the pseudo-single domain predicated by the squareness values (0.1526 and 0.1824). It is mentioned that increasing the egg white content would promote the magnetization of NiFe2O4

    Magnetic Behavior of Virgin and Lithiated NiFe<sub>2</sub>O<sub>4</sub> Nanoparticles

    No full text
    A series of virgin and lithia-doped Ni ferrites was synthesized using egg-white-mediated combustion. Characterization of the investigated ferrites was performed using several techniques, specifically, X-ray Powder Diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and High-resolution transmission electron microscopy (HRTEM). XRD-based structural parameters were determined. A closer look at these characteristics reveals that lithia doping enhanced the nickel ferrite lattice constant (a), unit cell volume (V), stress (ε), microstrain (σ), and dislocation density (δ). It also enhanced the separation between magnetic ions (LA and LB), ionic radii (rA, rB), and bond lengths (A-O and B-O) between tetrahedral (A) and octahedral (B) locations. Furthermore, it enhanced the X-ray density (Dx) and crystallite size (d) of random spinel nickel ferrite displaying opposing patterns of behavior. FTIR-based functional groups of random spinel nickel ferrite were determined. HRTEM-based morphological properties of the synthesized ferrite were investigated. These characteristics of NiFe2O4 particles, such as their size, shape, and crystallinity, demonstrate that these manufactured particles are present at the nanoscale and that lithia doping caused shape modification of the particles. Additionally, the prepared ferrite’s surface area and total pore volume marginally increased after being treated with lithia, depending on the visibility of the grain boundaries. Last, but not least, as the dopant content was increased through a variety of methods, the magnetization of virgin nickel ferrite fell with a corresponding increase in coercivity. Uniaxial anisotropy, rather than cubic anisotropy, and antisite and cation excess defects developed in virgin and lithia-doped nickel ferrites because the squareness ratio (Mr/Ms) was less than 0.5. Small squareness values strongly recommend using the assessed ferrites in high-frequency applications

    Green Synthesis and Pinning Behavior of Fe-Doped CuO/Cu2O/Cu4O3 Nanocomposites

    No full text
    Egg white-induced auto combustion has been used to synthesize undoped and Fe-doped CuO/Cu2O/Cu4O3 nanocomposites in a soft, secure, and one-pot procedure. X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) investigations have been used to identify functional groups and the structural properties of crystalline phases present in the as-synthesized composites. Scanning Electron Microscopy/Energy Dispersive Spectrometry (SEM/EDS) elemental mapping analyses and Transmission Electron Microscopy (TEM) techniques were used to explore the morphological and compositional properties of these composites. N2-adsorption/desorption isotherm models have been used to examine the surface variables of the as-prepared systems. Based on the Vibrating Sample Magnetometer (VSM) technique, the magnetic properties of various copper-based nanocomposites were detected due to being Fe-doped. XRD results showed that the undoped system was composed of CuO as a major phase with Cu2O and Cu4O3 as second phases that gradually disappeared by increasing the dopant content. The crystalline phase&rsquo;s crystallographic properties were determined. The average particle size was reduced when the synthesized systems were doped with Fe. The construction of porous and polycrystalline nanocomposites involving Cu, Fe, O, and C components was confirmed by SEM/EDS and TEM measurements. In terms of the increase in magnetization of the as-manufactured nanocomposites due to Fe-doping, oxygen vacancies at the surface/or interfacial of nanoparticles, while also domain wall pinning mechanisms, were investigated. Finally, employing the investigated production process, Fe doping of CuO/Cu2O/Cu4O3 nanocomposite resulted in the development of a single phase (CuO) exhibiting &ldquo;pinned&rdquo; type magnetization. This is the first publication to show that CuO/Cu2O/Cu4O3
    corecore