66 research outputs found

    Effects of Plasma Radiation on the Thomson Scattering Diagnostic Installed on the Large Helical Device

    Get PDF
    Recently we modified the Thomson scattering diagnostic (TS) installed on LHD so that DC levels (VDC) of all avalanche photodiodes (APD) used for detecting scattered light can be registered every 1 ms, which enabling us to make validity check on TS data taken under very intense plasma radiation. In the line of this task, we first examined how the pulse-performance of an APD degrades as the intensity of continuous light (JDC) incident to the APD increases. We found two effects are involved in deteriorating the pulse-performance of the APD: (1) the responsivity of the APD to a pulsed light drops as JDC increases, causing a systematic errors on the deduced electron temperature (Te) and density (ne); (2) the frequency response of the APD and the following circuit drops as JDC increases, which deforms the pulse shape. The bias voltage applied to the APD (Vb) has large influence on these behaviors, showing the best overall performance for a high JDC around Vb ? 0.5Vr, where Vr is the recommended voltage giving responsivity of 675 kV/W at 1060 nm. Considering these effects together, we set a conservative validity criterion for the pulse APD performance in term of the VDC: VDC < 0.5 V. The Vb = 0.5 Vr setup gives much reliable Te-profiles without a collapse in Te-profile for a much wider range of plasma radiation intensity. With this criterion, we check the validity of Te- and ne-profiles of two example data

    Raman and Rayleigh Calibrations of the LHD YAG Thomson Scattering

    Get PDF
    We have carried out absolute calibrations of the LHD YAG Thomson scattering system by using Raman scattering and Rayleigh scattering in order to verify the applicability of Rayleigh calibration in the LHD Thomson scattering, and make a comparative study of Raman and Rayleigh calibrations. In the LHD Thomson scattering device, Rayleigh calibration is expected to give more reliable calibration factors. For the Rayleigh calibration, additional Rayleigh channel was installed into 20 polychromators. The other 124 polychromators without Rayleigh channel were calibrated by only Raman scattering. In the Raman calibration, pure gaseous nitrogen was introduced into the LHD vacuum vessel whereas the Rayleigh calibration was made by using air as target gas. The calibration factors obtained from the Raman and Rayleigh calibrations show good agreements. Uncertainties in the calibration factors obtained from the Raman and Rayleigh calibrations are discussed

    On-Demand Density Correction Using Steady-State Plasmas in the LHD Thomson Scattering

    Get PDF
    In order to measure reliable electron densities of fusion plasmas by using Thomson scattering system, both accurate absolute calibration and long-term stability in the system are required. Even if slight misalignment of some optics occurs, it may cause large errors in measured densities. We propose a new method to obtain correctionfactors to the errors originated from misalignment by using steady-state plasma discharges. In addition to the datacorrection, realignment of the laser beam can be applied als

    Relationships between the Prediction of Linear MHD Stability Criteria and the Experiment in LHD

    Get PDF
    We analyze the relationship between the experimentally observed pressure gradients at resonant rational surfaces and the theoretically predicted ideal magnetohydrodynamics (MHD) unstable region of global modes in the large helical device (LHD). According to the stability analysis of the ideal MHD modes with a low toroidal mode number, we find that the ideal MHD mode gives a constraint on the operational regime of the pressure gradients in the core. In the edge, a clear saturation of the pressure gradients due to the ideal MHD instability has not been observed up to the high beta regime around 3% as the volume-averaged toridal beta value, where global ideal MHD modes are predictedto be unstable

    ECCD Experiment Using an Upgraded ECH System on LHD

    Get PDF
    Electron cyclotron current drive (ECCD) is an attractive tool for controlling plasmas. In the large helical device (LHD), ECCD experiments have been performed by using an EC-wave power source, gyrotron, with a frequency of 84 GHz. The maximum driven current was ?9 kA with 100 kW injection power to plasma and 8 s duration of EC-wave pulse. These years, high-power and long-pulse 77 GHz gyrotrons were newly installed. An ECCD experiment with 775 kW injection power was performed. The 77 GHz waves of 8 s pulse duration sustained the plasmas. The EC-wave beam direction was scanned toroidally, keeping the beam direction aiming at the magnetic axis in X-mode polarization. In spite of the change in the EC-wave beam direction, plasma parameters such as the line-average electron density, the central electron temperature and the plasma stored energy were kept nearly the same values for the discharges, ?0.3 × 1019 m?3, ?3 keV and ?30 kJ, except for the plasma current. The plasma current showed a systematic change with the change in the beam direction for ECCD, and at an optimum direction with N// ? ?0.3, the plasma current reached its maximum, ?40 kA. Also, current drive efficiency normalized with density and power was improved by 50% compared with that at the former 84 GHz ECCD experiment

    The Effect of Non-Axisymmetry of Magnetic Configurations on Radial Electric Field Transition Properties in the LHD

    Get PDF
    Transition property of the radial electric field (Er) in LHD have been theoretically investigated and also applied to explain experimental results. Especially, effects of the helicity of the magnetic configuration on the condition to realize the electron root are examined. Larger helicity makes the threshold collisionality higher. This is attributed to the nonlinear dependence of Γe(Er) in a low collisional regime. This interesting feature predicts that the threshold temperature becomes higher for a case of smaller helicity. The variation of the threshold density anticipated from the analysis for cases with different magnetic axis position is qualitatively verified in the density scan experiment

    Spatial resolved high-energy particle diagnostic system using time-of-flight neutral particle analyzer in Large Helical Device

    Get PDF
    The time-of-flight-type neutral particle analyzer has an ability of horizontal scanning from 40 to 100° of the pitch angle. The information from the spatially resolved energy spectrum gives not only the ion temperature but also the information of the particle confinement and the electric field in plasmas. We have been studying the energy distributions at various magnetic configurations in the neutral beam injection (NBI) plasma. The spatially resolved energy spectra can be observed during long discharges of the NBI plasma by continuous scanning of the neutral particle analyzer. The shape of spectra is almost similar from 44° to 53°. However, the spectra from 55° are strongly varied. They reflect the injection pitch angle of the beam. The pitch angle scanning experiment during the long discharge of NBI plasma has also been made under the reversal of the magnetic field direction. NBI2 becomes counter injected with the reversal. We can easily observe the difference between co- and counter injections of NBI. During the electron cyclotron heating in the low-density plasma for the formation of the internal thermal barrier, large neutral particle increase or decease can be observed. The degree of the increase/decrease depends on the energy and the density. The reason for the variation of the particle flux is that the orbit of the trapped particle changes due to the electric field formed by the strong electron cyclotron heating

    Present Status in the Development of 6 MeV Heavy Ion Beam Probe on LHD

    Get PDF
    In order to measure the potential in Large Helical Device (LHD), we have been developing a heavy ion beam probe (HIBP). For probing beam, gold beam is used, which is accelerated by a tandem accelerator up to the energy of 6 MeV. The experiments for calibration of beam orbit were done, and experimental results were compared with orbit calculations. The experimental results coincided fairly with the calculation results. After the calibration of the beam orbit, the potential in plasma was tried to measure with the HIBP. The experimental data showed positive potential in a neutral beam heating phase on the condition of ne ? 5 × 10^18 m^-3, and the increase of potential was observed when the additional electron cyclotron heating was applied to this plasma. The time constant for this increase was about a few tens ms, which was larger than a theoretical expectation. In the spatial position of sample volume, we might have an ambiguity in this experiment

    Improvement of Ion Confinement in Core Electron-Root Confinement (CERC) Plasmas in Large Helical Device

    Get PDF
    An increase in ion temperature has been observed with superposition of centrally focused electron cyclotron resonance heating (ECRH) to plasmas heated by high-energy neutral beam injection (NBI) in Large Helical Device. The ion-temperature (Ti) rise is accompanied by the formation of electron internal transport barrier (ITB). A transport analysis shows that ion transport as well as electron transport is improved with the reduction of anomalous transport. A neoclassical ambipolar flux calculation shows a positive radial-electric field (Er) in the region of the Ti rise, and Er should suppress the enhancement of ripple transport due to the Ti-rise. These analyses indicate the ion transport improvement in the core electron-root confinement plasmas. Toroidal rotation is driven in the co-direction by applying ECRH, and the toroidal rotation velocity is increased with the Ti rise. A correlation between the Ti rise and toroidal rotation is suggested

    Density Regimes of Complete Detachment and Serpens Mode in LHD

    Get PDF
    In the Large Helical Device (LHD), the hot plasma column shrinks at the high-density regime and complete detachment takes place. Hydrogen volume recombination is observed at complete detachment. This phase isself-sustained under specific experimental conditions and called the Serpens mode (self-regulated plasma edge ‘neath the last-closed-flux-surface). The Serpens mode is achieved after either rapid or slow density ramp up, and either by hydrogen or helium gas puffing. The threshold conditions for complete detachment and the Serpens mode are experimentally documented in the parameter space of heating power and density. The threshold density for the Serpens mode transition increases with ? 0.4 power of the heating power. The total radiation is shown to be not adequate to describe the threshold conditions, since it mainly includes the information of very edge region outside the hot plasma column. The operational density limit in LHD, which is sustainable in steady state, has been extended to 1.7 times as high as the Sudo density limit, by applying pellet injection to the Serpens plasmas
    • …
    corecore