2 research outputs found

    Effect of heat stress on physio-biochemical characteristics of chickpea (Cicer arietinum) genotypes

    Get PDF
    A study was conducted with three chickpea genotypes Pusa 256, RSG 888 and JG 11 to study the effect of high temperature stress on various physiological and biochemical parameters. In all the chickpea genotypes high temperature stress decreased RWC, MSI, Chl content, dry matter, leaf area and increased activity of antioxidant enzymes such as POX, GR, and SOD. RSG 888 possessed better seedling growth parameters under high temperature as compared to Pusa 256 and JG 11

    Phosphorus Starvation Tolerance in Rice Through Combined Physiological, Biochemical, and Proteome Analyses

    No full text
    Phosphorus (P) deficiency limits the growth, development, and productivity of rice. To better understand the underlying mechanisms in P-deficiency tolerance and the role of Pup1 QTL in enhancing P use efficiency (PUE) for the development of P-efficient rice cultivars, a pair of contrasting rice genotypes (Pusa-44 and NIL-23) was applied to investigate the morpho-physio-biochemical and proteomic variation under P-starvation stress. The rice genotypes were grown hydroponically in a PusaRich medium with adequate P (16 mg/kg, +P) or without P (0 mg/kg, -P) for 30 d. P-starvation manifested a significant reductions in root and shoot biomass, shoot length, leaf area, total chlorophyll, and P, nitrogen and starch contents, as well as protein kinase activity. The stress increased root-to-shoot biomass ratio, root length, sucrose content, and acid phosphatase activity, particularly in the P-tolerant genotype (NIL-23). Comparative proteome analysis revealed several P metabolism-associated proteins (including OsCDPKs, OsMAPKs, OsCPKs, OsLecRK2, and OsSAPks) to be expressed in the shoot of NIL-23, indicating that multiple protein kinases were involved in P-starvation/deficiency tolerance. Moreover, the up-regulated expression of OsrbcL, OsABCG32, OsSUS5, OsPolI-like B, and ClpC2 proteins in the shoot, and OsACA9, OsACA8, OsSPS2F, OsPP2C15, and OsBiP3 in the root of NIL-23, indicated their role in P-starvation stress control through the Pup1 QTL. Thus, our findings indicated that -P stress-responsive proteins, in conjunction with morpho-physio-biochemical modulations, improved PUE and made NIL-23 a P-deficiency tolerant genotype due to the introgression of the Pup1 QTL in the Pusa-44 background
    corecore