808 research outputs found
Measurement of Parity Violation in the Early Universe using Gravitational-wave Detectors
A stochastic gravitational-wave background (SGWB) is expected to arise from
the superposition of many independent and unresolved gravitational-wave
signals, of either cosmological or astrophysical origin. Some cosmological
models (characterized, for instance, by a pseudo-scalar inflaton, or by some
modification of gravity) break parity, leading to a polarized SGWB. We present
a new technique to measure this parity violation, which we then apply to the
recent results from LIGO to produce the first upper limit on parity violation
in the SGWB, assuming a generic power-law SGWB spectrum across the LIGO
sensitive frequency region. We also estimate sensitivity to parity violation of
the future generations of gravitational-wave detectors, both for a power-law
spectrum and for a model of axion inflation. This technique offers a new way of
differentiating between the cosmological and astrophysical sources of the
isotropic SGWB, as astrophysical sources are not expected to produce a
polarized SGWB.Comment: 5 pages, 2 figures, 1 tabl
Observable non-gaussianity from gauge field production in slow roll inflation, and a challenging connection with magnetogenesis
In any realistic particle physics model of inflation, the inflaton can be
expected to couple to other fields. We consider a model with a dilaton-like
coupling between a U(1) gauge field and a scalar inflaton. We show that this
coupling can result in observable non-gaussianity, even in the conventional
regime where inflation is supported by a single scalar slowly rolling on a
smooth potential: the time dependent inflaton condensate leads to amplification
of the large-scale gauge field fluctuations, which can feed-back into the
scalar/tensor cosmological perturbations. In the squeezed limit, the resulting
bispectrum is close to the local one, but it shows a sizable and characteristic
quadrupolar dependence on the angle between the shorter and the larger modes in
the correlation. Observable non-gaussianity is obtained in a regime where
perturbation theory is under control. If the gauge field is identified with the
electromagnetic field, the model that we study is a realization of the
magnetogenesis idea originally proposed by Ratra, and widely studied. This
identification (which is not necessary for the non-gaussianity production) is
however problematic in light of a strong coupling problem already noted in the
literature.Comment: 28 pages, no figures. Final versio
Measurement of Positronium hyperfine splitting with quantum oscillation
Interference between different energy eigenstates in a quantum system results
in an oscillation with a frequency which is proportional to the difference in
energy between the states. Such an oscillation is observable in polarized
positronium when it is placed in a magnetic field. In order to measure the
hyperfine splitting of positronium, we perform the precise measurement of this
oscillation using a high quality superconducting magnet and fast
photon-detectors. A result of ~GHz is obtained which is consistent with both theoretical
calculations and previous precise measurements.Comment: 4 figures accepted by Phys. Lett.
Heat flow of the Earth and resonant capture of solar 57-Fe axions
In a very conservative approach, supposing that total heat flow of the Earth
is exclusively due to resonant capture inside the Earth of axions, emitted by
57-Fe nuclei on Sun, we obtain limit on mass of hadronic axion: m_a<1.8 keV.
Taking into account release of heat from decays of 40-K, 232-Th, 238-U inside
the Earth, this estimation could be improved to the value: m_a<1.6 keV. Both
the values are less restrictive than limits set in devoted experiments to
search for 57-Fe axions (m_a<216-745 eV), but are much better than limits
obtained in experiments with 83-Kr (m_a<5.5 keV) and 7-Li (m_a<13.9-32 keV).Comment: 8 page
Novel inter-subunit contacts in Barley Stripe Mosaic Virus revealed by Cryo-Electron Microscopy
Barley stripe mosaic virus (BSMV, genus Hordeivirus) is a rod-shaped single-stranded RNA virus similar to viruses of the structurally characterized and well-studied genus Tobamovirus. Here we report the first high-resolution structure of BSMV at 4.1 Å obtained by cryo-electron microscopy. We discovered that BSMV forms two types of virion that differ in the number of coat protein (CP) subunits per turn and interactions between the CP subunits. While BSMV and tobacco mosaic virus CP subunits have a similar fold and interact with RNA using conserved residues, the axial contacts between the CP of these two viral groups are considerably different. BSMV CP subunits lack substantial axial contacts and are held together by a previously unobserved lateral contact formed at the virion surface via an interacting loop, which protrudes from the CP hydrophobic core to the adjacent CP subunit. These data provide an insight into diversity in structural organization of helical viruses
Phenomenology of a Pseudo-Scalar Inflaton: Naturally Large Nongaussianity
Many controlled realizations of chaotic inflation employ pseudo-scalar
axions. Pseudo-scalars \phi are naturally coupled to gauge fields through c
\phi F \tilde{F}. In the presence of this coupling, gauge field quanta are
copiously produced by the rolling inflaton. The produced gauge quanta, in turn,
source inflaton fluctuations via inverse decay. These new cosmological
perturbations add incoherently with the "vacuum" perturbations, and are highly
nongaussian. This provides a natural mechanism to generate large nongaussianity
in single or multi field slow-roll inflation. The resulting phenomenological
signatures are highly distinctive: large nongaussianity of (nearly) equilateral
shape, in addition to detectably large values of both the scalar spectral tilt
and tensor-to-scalar ratio (both being typical of large field inflation). The
WMAP bound on nongaussianity implies that the coupling, c, of the pseudo-scalar
inflaton to any gauge field must be smaller than about 10^{2} M_p^{-1}.Comment: 45 pages, 7 figure
Direct observation of speed fluctuations of flagellar motor rotation at extremely low load close to zero
The bacterial flagellar motor accommodates ten stator units around the rotor to produce large torque at high load. But when external load is low, some previous studies showed that a single stator unit can spin the rotor at the maximum speed, suggesting that the maximum speed does not depend on the number of active stator units, whereas others reported that the speed is also dependent on the stator number. To clarify these two controversial observations, much more precise measurements of motor rotation would be required at external load as close to zero as possible. Here, we constructed a Salmonella filament‐less mutant that produces a rigid, straight, twice longer hook to efficiently label a 60 nm gold particle and analyzed flagellar motor dynamics at low load close to zero. The maximum motor speed was about 400 Hz. Large speed fluctuations and long pausing events were frequently observed, and they were suppressed by either over‐expression of the MotAB stator complex or increase in the external load, suggesting that the number of active stator units in the motor largely fluctuates near zero load. We conclude that the lifetime of the active stator unit becomes much shorter when the motor operates near zero load
Deformations of calibrated D-branes in flux generalized complex manifolds
We study massless deformations of generalized calibrated cycles, which
describe, in the language of generalized complex geometry, supersymmetric
D-branes in N=1 supersymmetric compactifications with fluxes. We find that the
deformations are classified by the first cohomology group of a Lie algebroid
canonically associated to the generalized calibrated cycle, seen as a
generalized complex submanifold with respect to the integrable generalized
complex structure of the bulk. We provide examples in the SU(3) structure case
and in a `genuine' generalized complex structure case. We discuss cases of
lifting of massless modes due to world-volume fluxes, background fluxes and a
generalized complex structure that changes type.Comment: 52 pages, added references, added comment on ellipticity in appendix
B, made minor changes according to instructions referee JHE
Immunogold electron microscopic evidence of in situ formation of homo- and heteromeric purinergic adenosine A1 and P2Y2 receptors in rat brain
<p>Abstract</p> <p>Background</p> <p>Purines such as adenosine and ATP are now generally recognized as the regulators of many physiological functions, such as neurotransmission, pain, cardiac function, and immune responses. Purines exert their functions via purinergic receptors, which are divided into adenosine and P2 receptors. Recently, we demonstrated that the G<sub>i/o</sub>-coupled adenosine A<sub>1 </sub>receptor (A<sub>1</sub>R) and G<sub>q/11</sub>-coupled P2Y<sub>2 </sub>receptor (P2Y<sub>2</sub>R) form a heteromeric complex with unique pharmacology in co-transfected human embryonic kidney cells (HEK293T). However, the heteromeric interaction of A<sub>1</sub>R and P2Y<sub>2</sub>R <it>in situ </it>in brain is still largely unknown.</p> <p>Findings</p> <p>In the present study, we visualized the surface expression and co-localization of A<sub>1</sub>R and P2Y<sub>2</sub>R in both transfected HEK293T cells and in rat brain by confocal microscopy and more precisely by immunogold electron microscopy. Immunogold electron microscopy showed the evidence for the existence of homo- and hetero-dimers among A<sub>1</sub>R and P2Y<sub>2</sub>R at the neurons in cortex, cerebellum, and particularly cerebellar Purkinje cells, also supported by co-immunoprecipitation study.</p> <p>Conclusion</p> <p>The results suggest that evidence for the existence of homo- and hetero-dimers of A<sub>1</sub>R and P2Y<sub>2</sub>R, not only in co-transfected cultured cells, but also <it>in situ </it>on the surface of neurons in various brain regions. While the homo-dimerization ratios displayed similar patterns in all three regions, the rates of hetero-dimerization were prominent in hippocampal pyramidal cells among the three regions.</p
- …