3,993 research outputs found
Parametric correlations versus fidelity decay: the symmetry breaking case
We derive fidelity decay and parametric energy correlations for random matrix
ensembles where time--reversal invariance of the original Hamiltonian is broken
by the perturbation. Like in the case of a symmetry conserving perturbation a
simple relation between both quantities can be established.Comment: 8 pages, 8 figure
Superconductivity in CVD Diamond Thin Film Well-Above Liquid Helium Temperature
Diamond has always been adored as a jewel. Even more fascinating is its
outstanding physical properties; it is the hardest material known in the world
with the highest thermal conductivity. Meanwhile, when we turn to its
electrical properties, diamond is a rather featureless electrical insulator.
However, with boron doping, it becomes a p-type semiconductor, with boron
acting as a charge acceptor. Therefore the recent news of superconductivity in
heavily boron-doped diamond synthesized by high pressure sintering was received
with considerable surprise. Opening up new possibilities for diamond-based
electrical devices, a systematic investigation of these phenomena clearly needs
to be achieved. Here we show unambiguous evidence of superconductivity in a
diamond thin film deposited by a chemical vapor deposition (CVD) method.
Furthermore the onset of the superconducting transition is found to be 7.4K,
which is higher than the reported value in ref(7) and well above helium liquid
temperature. This finding establishes the superconductivity to be a universal
property of boron-doped diamond, demonstrating that device application is
indeed a feasible challenge.Comment: 6 pages, 3 figure
Semiclassical Approach to Parametric Spectral Correlation with Spin 1/2
The spectral correlation of a chaotic system with spin 1/2 is universally
described by the GSE (Gaussian Symplectic Ensemble) of random matrices in the
semiclassical limit. In semiclassical theory, the spectral form factor is
expressed in terms of the periodic orbits and the spin state is simulated by
the uniform distribution on a sphere. In this paper, instead of the uniform
distribution, we introduce Brownian motion on a sphere to yield the parametric
motion of the energy levels. As a result, the small time expansion of the form
factor is obtained and found to be in agreement with the prediction of
parametric random matrices in the transition within the GSE universality class.
Moreover, by starting the Brownian motion from a point distribution on the
sphere, we gradually increase the effect of the spin and calculate the form
factor describing the transition from the GOE (Gaussian Orthogonal Ensemble)
class to the GSE class.Comment: 25 pages, 2 figure
Microscopic Evidence for Evolution of Superconductivity by Effective Carrier Doping in Boron-doped Diamond:11B-NMR study
We have investigated the superconductivity discovered in boron (B)-doped
diamonds by means of 11B-NMR on heteroepitaxially grown (111) and (100) films.
11B-NMR spectra for all of the films are identified to arise from the
substitutional B(1) site as single occupation and lower symmetric B(2) site
substituted as boron+hydrogen(B+H) complex, respectively. A clear evidence is
presented that the effective carriers introduced by B(1) substitution are
responsible for the superconductivity, whereas the charge neutral B(2) sites
does not offer the carriers effectively. The result is also corroborated by the
density of states deduced by 1/T1T measurement, indicating that the evolution
of superconductivity is driven by the effective carrier introduced by
substitution at B(1) site.Comment: 4 pages, 6 figures, to be published in Phys. Rev. B (Brief report
- …