54 research outputs found

    A Tutorial and Review on Flight Control Co-Simulation Using Matlab/Simulink and Flight Simulators

    Get PDF
    Flight testing in a realistic three-dimensional virtual environment is increasingly being considered a safe and cost-effective way of evaluating aircraft models and their control systems. The paper starts by reviewing and comparing the most popular personal computer-based flight simulators that have been successfully interfaced to date with the MathWorks software. This co-simulation approach allows combining the strengths of Matlab toolboxes for functions including navigation, control, and sensor modeling with the advanced simulation and scene rendering capabilities of dedicated flight simulation software. This approach can then be used to validate aircraft models, control algorithms, flight handling chatacteristics, or perform model identification from flight data. There is, however, a lack of sufficiently detailed step-by-step flight co-simulation tutorials, and there have also been few attempts to evaluate more than one flight co-simulation approach at a time. We, therefore, demonstrate our own step-by-step co-simulation implementations using Simulink with three different flight simulators: Xplane, FlightGear, and Alphalink’s virtual flight test environment (VFTE). All three co-simulations employ a real-time user datagram protocol (UDP) for data communication, and each approach has advantages depending on the aircraft type. In the case of a Cessna-172 general aviation aircraft, a Simulink co-simulation with Xplane demonstrates successful virtual flight tests with accurate simultaneous tracking of altitude and speed reference changes while maintaining roll stability under arbitrary wind conditions that present challenges in the single propeller Cessna. For a medium endurance Rascal-110 unmanned aerial vehicle (UAV), Simulink is interfaced with FlightGear and with QGroundControl using the MAVlink protocol, which allows to accurately follow the lateral UAV path on a map, and this setup is used to evaluate the validity of Matlab-based six degrees of freedom UAV models. For a smaller ZOHD Nano Talon miniature aerial vehicle (MAV), Simulink is interfaced with the VFTE, which was specifically designed for this MAV, and with QGroundControl for the testing of advanced H-infinity observer-based autopilots using a software-in-the-loop (SIL) simulation to achieve robust low altitude flight under windy conditions. This is then finally extended to hardware-in-the-loop (HIL) implementation on the Nano Talon MAV using a controller area network (CAN) databus and a Pixhawk-4 mini autopilot with simulated sensor models

    A Box Regularized Particle Filter for state estimation with severely ambiguous and non-linear measurements

    Get PDF
    International audienceThe first stage in any control system is to be able to accurately estimate the system's state. However, some types of measurements are ambiguous (non-injective) in terms of state. Existing algorithms for such problems, such as Monte Carlo methods, are computationally expensive or not robust to such ambiguity. We propose the Box Regularized Particle Filter (BRPF) to resolve these problems. Based on previous works on box particle filters, we present a more generic and accurate formulation of the algorithm, with two innovations: a generalized box resampling step and a kernel smoothing method, which is shown to be optimal in terms of Mean Integrated Square Error. Monte Carlo simulations demonstrate the efficiency of BRPF on a severely ambiguous and non-linear estimation problem, that of Terrain Aided Navigation. BRPF is compared to the Sequential Importance Resampling Particle Filter (SIR-PF), Monte Carlo Markov Chain (MCMC), and the original Box Particle Filter (BPF). The algorithm outperforms existing methods in terms of Root Mean Square Error (e.g., improvement up to 42% in geographical position estimation with respect to the BPF) for a large initial uncertainty. The BRPF reduces the computational load by 73% and 90% for SIR-PF and MCMC, respectively, with similar RMSE values. This work offers an accurate (in terms of RMSE) and robust (in terms of divergence rate) way to tackle state estimation from ambiguous measurements while requiring a significantly lower computational load than classic Monte Carlo and particle filtering methods.The first stage in any control system is to be able to accurately estimate the system’s state. However, some types of measurements are ambiguous (non-injective) in terms of state. Existing algorithms for such problems, such as Monte Carlo methods, are computationally expensive or not robust to such ambiguity. We propose the Box Regularized Particle Filter (BRPF) to resolve these problems.Based on previous works on box particle filters, we present a more generic and accurate formulation of the algorithm, with two innovations: a generalized box resampling step and a kernel smoothing method, which is shown to be optimal in terms of Mean Integrated Square Error.Monte Carlo simulations demonstrate the efficiency of BRPF on a severely ambiguous and non-linear estimation problem, the Terrain Aided Navigation. BRPF is compared to the Sequential Importance Resampling Particle Filter (SIR-PF), the Markov Chain Monte Carlo approach (MCMC), and the original Box Particle Filter (BPF). The algorithm is demonstrated to outperform existing methods in terms of Root Mean Square Error (e.g., improvement up to 42% in geographical position estimation with respect to the BPF) for a large initial uncertainty.The BRPF yields a computational load reduction of 73% with respect to the SIR-PF and of 90% with respect to MCMC for similar RMSE orders of magnitude. The present work offers an accurate (in terms of RMSE) and robust (in terms of divergence rate) way to tackle state estimation from ambiguous measurements while requiring a significantly lower computational load than classic Monte Carlo and particle filtering methods

    Observer-Based Optimal Control of a Quadplane with Active Wind Disturbance and Actuator Fault Rejection

    Get PDF
    Hybrid aircraft configurations with combined cruise and vertical flight capabilities are increasingly being considered for unmanned aircraft and urban air mobility missions. To ensure the safety and autonomy of such missions, control challenges including fault tolerance and windy conditions must be addressed. This paper presents an observer-based optimal control approach for the active combined fault and wind disturbance rejection, with application to a quadplane unmanned aerial vehicle. The quadplane model is linearised for the longitudinal plane, vertical takeoff and landing and transition modes. Wind gusts are modelled using a Dryden turbulence model. An unknown input observer is first developed for the estimation of wind disturbance by defining an auxiliary variable that emulates body referenced accelerations. The approach is then extended to simultaneous rejection of intermittent elevator faults and wind disturbance velocities. Estimation error is mathematically proven to converge to zero, assuming a piecewise constant disturbance. A numerical simulation analysis demonstrates that for a typical quadplane flight profile at 100 m altitude, the observer-based wind gust and fault correction significantly enhances trajectory tracking accuracy compared to a linear quadratic regulator and to a H-infinity controller, which are both taken, without loss of generality, as benchmark controllers to be enhanced. This is done by adding wind and fault compensation terms to the controller with admissible control effort. The proposed observer is also shown to enhance accuracy and observer-based rejection of disturbances and faults compared to three alternative observers, based on output error integration, acceleration feedback and a sliding mode observer, respectively. The proposed approach is particularly efficient for the active rejection of actuator faults under windy conditions.</p

    Tailplane or main wing stall? LOC-I event due to suspected icing

    Get PDF

    Simultaneous Actuator and Sensor Faults Estimation for Aircraft Using a Jump-Markov Regularized Particle Filter

    Get PDF
    International audienceThe advances in aircraft autonomy have led to an increased demand for robust sensor and actuator fault detection and estimation methods in challenging situations including the onset of ambiguous faults. In this paper, we consider potential simultaneous fault on sensors and actuators of an Unmanned Aerial Vehicle. The faults are estimated using a Jump-Markov Regularized Particle Filter. The jump Markov decision process is used within a regularized particle filter structure to drive a small subset of particles to test the likelihood of the alternate hypothesis to the current fault mode. A prior distribution of the fault is updated using innovations based on predicted control and measurements. Fault scenarios were focused on cases when the impacts of the actuator and sensor faults are similar. Monte Carlo simulations illustrate the ability of the approach to discriminate between the two types of faults and to accurately and rapidly estimate them. The states are also accurately estimated

    Mode Switching Control Using Lane Keeping Assist and Waypoints Tracking for Autonomous Driving in a City Environment

    Get PDF
    This paper proposes a mode switching supervisory controller for autonomous vehicles. The supervisory controller selects the most appropriate controller based on safety constraints and on the vehicle location with respect to junctions. Autonomous steering, throttle and deceleration control inputs are used to perform variable speed lane keeping assist, standard or emergency braking and to manage junctions, including roundabouts. Adaptive model predictive control with lane keeping assist is performed on the main roads and a linear pure pursuit inspired controller is applied using waypoints at road junctions where lane keeping assist sensors present a safety risk. A multi-stage rule based autonomous braking algorithm performs stop, restart and emergency braking maneuvers. The controllers are implemented in MATLAB® and Simulink™ and are demonstrated using the Automatic Driving Toolbox™ environment. Numerical simulations of autonomous driving scenarios demonstrate the efficiency of the lane keeping assist mode on roads with curvature and the ability to accurately track waypoints at cross intersections and roundabouts using a simpler pure pursuit inspired mode. The ego vehicle also autonomously stops in time at signaled intersections or to avoid collision with other road users
    • …
    corecore