31 research outputs found

    Both piRNA and siRNA Pathways Are Silencing Transcripts of the Suffix Element in the Drosophila melanogaster Germline and Somatic Cells

    Get PDF
    In the Drosophila melanogaster germline, the piRNA pathway silences retrotransposons as well as other transcribed repetitive elements. Suffix is an unusual short retroelement that was identified both as an actively transcribed repetitive element and also as an element at the 3β€² ends of the Drosophila non-LTR F element. The copies of suffix that are F element-independent are far more actively transcribed than their counterparts on the F element. We studied the patterns of small RNAs targeting both strands of suffix in Drosophila ovaries using an RNase protection assay and the analysis of the corresponding RNA sequences from the libraries of total small RNAs. Our results indicate that suffix sense and antisense transcripts are targeted mainly by 23–29 nucleotides in length piRNAs and also by 21 nucleotides in length siRNAs. Suffix sense transcripts actively form longer RNA species, corresponding either to partial digestion products of the RNAi and Piwi pathways or to another RNA silencing mechanism. Both sense and antisense suffix transcripts accumulated in the ovaries of homozygous spn-E, piwi and aub mutants. These results provide evidence that suffix sense and antisense transcripts in the germ line and soma are targeted by both RNAi and Piwi pathways and that a Dicer-independent pathway of biogenesis of siRNAs could exist in Drosophila cells

    Suffix-specific RNAi Leads to Silencing of F Element in Drosophila melanogaster

    Get PDF
    Separate conserved copies of suffix, a short interspersed Drosophila retroelement (SINE), and also divergent copies in the 3β€² untranslated regions of the three genes, have already been described. Suffix has also been identified on the 3β€² end of the Drosophila non-LTR F element, where it forms the last conserved domain of the reverse transcriptase (RT). In our current study, we show that the separate copies of suffix are far more actively transcribed than their counterparts on the F element. Transcripts from both strands of suffix are present in RNA preparations during all stages of Drosophila development, providing the potential for the formation of double-stranded RNA and the initiation of RNA interference (RNAi). Using in situ RNA hybridization analysis, we have detected the expression of both sense and antisense suffix transcripts in germinal cells. These sense and antisense transcripts are colocalized in the primary spermatocytes and in the cytoplasm of the nurse cells, suggesting that they form double-stranded RNA. We performed further analyses of suffix-specific small RNAs using northern blotting and SI nuclease protection assays. Among the total RNA preparations isolated from embryos, larvae, pupae and flies, suffix-specific small interfering RNAs (siRNAs) were detected only in pupae. In wild type ovaries, both the siRNAs and longer suffix-specific Piwi-interacting RNAs (piRNAs) were observed, whereas in ovaries of the Dicer-2 mutant, only piRNAs were detected. We further found by 3β€² RACE that in pupae and ovaries, F element transcripts lacking the suffix sequence are also present. Our data provide direct evidence that suffix-specific RNAi leads to the silencing of the relative LINE (long interspersed element), F element, and suggests that SINE-specific RNA interference could potentially downregulate a set of genes possessing SINE stretches in their 5β€² or 3β€² non-coding regions. These data also suggest that double stranded RNAs possessing suffix are processed by both RNAi and an additional silencing mechanism
    corecore