8 research outputs found

    Origin and removal of mixed-phase artifacts in gradient sensitivity enhanced heteronuclear single quantum correlation spectra

    Get PDF
    Here we describe phasing anomalies observed in gradient sensitivity enhanced 15N-1H HSQC spectra, and analyze their origin. It is shown that, as a result of 15N off-resonance effects, dispersive contributions to the 1H signal become detectable, and lead to 15N-offset dependent phase errors. Strategies that effectively suppress these artifacts are presented

    1000 spider silkomes: Linking sequences to silk physical properties.

    Full text link
    Spider silks are among the toughest known materials and thus provide models for renewable, biodegradable, and sustainable biopolymers. However, the entirety of their diversity still remains elusive, and silks that exceed the performance limits of industrial fibers are constantly being found. We obtained transcriptome assemblies from 1098 species of spiders to comprehensively catalog silk gene sequences and measured the mechanical, thermal, structural, and hydration properties of the dragline silks of 446 species. The combination of these silk protein genotype-phenotype data revealed essential contributions of multicomponent structures with major ampullate spidroin 1 to 3 paralogs in high-performance dragline silks and numerous amino acid motifs contributing to each of the measured properties. We hope that our global sampling, comprehensive testing, integrated analysis, and open data will provide a solid starting point for future biomaterial designs
    corecore