11 research outputs found

    Quantifying the Effects of Elastic Collisions and Non-Covalent Binding on Glutamate Receptor Trafficking in the Post-Synaptic Density

    Get PDF
    One mechanism of information storage in neurons is believed to be determined by the strength of synaptic contacts. The strength of an excitatory synapse is partially due to the concentration of a particular type of ionotropic glutamate receptor (AMPAR) in the post-synaptic density (PSD). AMPAR concentration in the PSD has to be plastic, to allow the storage of new memories; but it also has to be stable to preserve important information. Although much is known about the molecular identity of synapses, the biophysical mechanisms by which AMPAR can enter, leave and remain in the synapse are unclear. We used Monte Carlo simulations to determine the influence of PSD structure and activity in maintaining homeostatic concentrations of AMPARs in the synapse. We found that, the high concentration and excluded volume caused by PSD molecules result in molecular crowding. Diffusion of AMPAR in the PSD under such conditions is anomalous. Anomalous diffusion of AMPAR results in retention of these receptors inside the PSD for periods ranging from minutes to several hours in the absence of strong binding of receptors to PSD molecules. Trapping of receptors in the PSD by crowding effects was very sensitive to the concentration of PSD molecules, showing a switch-like behavior for retention of receptors. Non-covalent binding of AMPAR to anchored PSD molecules allowed the synapse to become well-mixed, resulting in normal diffusion of AMPAR. Binding also allowed the exchange of receptors in and out of the PSD. We propose that molecular crowding is an important biophysical mechanism to maintain homeostatic synaptic concentrations of AMPARs in the PSD without the need of energetically expensive biochemical reactions. In this context, binding of AMPAR with PSD molecules could collaborate with crowding to maintain synaptic homeostasis but could also allow synaptic plasticity by increasing the exchange of these receptors with the surrounding extra-synaptic membrane

    New approaches in the diagnosis and treatment of latent tuberculosis infection

    Get PDF
    With nearly 9 million new active disease cases and 2 million deaths occurring worldwide every year, tuberculosis continues to remain a major public health problem. Exposure to Mycobacterium tuberculosis leads to active disease in only ~10% people. An effective immune response in remaining individuals stops M. tuberculosis multiplication. However, the pathogen is completely eradicated in ~10% people while others only succeed in containment of infection as some bacilli escape killing and remain in non-replicating (dormant) state (latent tuberculosis infection) in old lesions. The dormant bacilli can resuscitate and cause active disease if a disruption of immune response occurs. Nearly one-third of world population is latently infected with M. tuberculosis and 5%-10% of infected individuals will develop active disease during their life time. However, the risk of developing active disease is greatly increased (5%-15% every year and ~50% over lifetime) by human immunodeficiency virus-coinfection. While active transmission is a significant contributor of active disease cases in high tuberculosis burden countries, most active disease cases in low tuberculosis incidence countries arise from this pool of latently infected individuals. A positive tuberculin skin test or a more recent and specific interferon-gamma release assay in a person without overt signs of active disease indicates latent tuberculosis infection. Two commercial interferon-gamma release assays, QFT-G-IT and T-SPOT.TB have been developed. The standard treatment for latent tuberculosis infection is daily therapy with isoniazid for nine months. Other options include therapy with rifampicin for 4 months or isoniazid + rifampicin for 3 months or rifampicin + pyrazinamide for 2 months or isoniazid + rifapentine for 3 months. Identification of latently infected individuals and their treatment has lowered tuberculosis incidence in rich, advanced countries. Similar approaches also hold great promise for other countries with low-intermediate rates of tuberculosis incidence

    Spectroscopic ellipsometry of mucin layers on an amphiphilic diblock copolymer surface

    Get PDF
    Both visible and infrared (IR) spectroscopic ellipsometry have been employed to study the structure of thin layers of bovine submaxillary mucin (BSM) adsorbed on poly(acrylic acid-block-methyl methacrylate) (PAA-b-PMMA) copolymer and poly(methyl methacrylate) (PMMA) surfaces at three pH values (3, 7, and 10). The adsorbed mucin layer on the copolymer surface had the greatest thickness (17 nm) when adsorbed from a mucin solution at a pH of 3. For the first time, IR ellipsometry was used to identify adhesive interactions and conformational changes in mucin/polymer double layers. After applying the regularized method of deconvolution in the analysis, the formation of hydrogen bonds between the carboxyl groups of the BSM and PAA-b-PMMA copolymer in double layers has been found. The IR ellipsometry data, in agreement with the visible ellipsometry analysis, indicate the pH dependence of adhesion of mucin to the copolymer surface. There is an increase in the amount of hydrogen-bonded carboxyl groups in mucin deposited at a pH of 3. There is no evidence that the amide groups of the mucin participate in this bonding. At the lower pH, the IR ellipsometry spectra after deconvolution reveal an increase in the proportion of β-sheets in the BSM upon adsorption on the copolymer surface, indicating a more unfolded, aggregated structure. The IR ellipsometry data also indicated some changes in the conformational states of the side groups in the copolymer induced by entanglements and bonding interactions with the mucin macromolecules. Deconvolution provides an unprecedented level of information from the IR ellipsometry spectra and yields important insights. © 2009 Society for Applied Spectroscopy

    Spectroscopic ellipsometry of mucin layers on an amphiphilic diblock copolymer surface

    No full text
    Both visible and infrared (IR) spectroscopic ellipsometry have been employed to study the structure of thin layers of bovine submaxillary mucin (BSM) adsorbed on poly(acrylic acid-block-methyl methacrylate) (PAA-b-PMMA) copolymer and poly(methyl methacrylate) (PMMA) surfaces at three pH values (3, 7, and 10). The adsorbed mucin layer on the copolymer surface had the greatest thickness (17 nm) when adsorbed from a mucin solution at a pH of 3. For the first time, IR ellipsometry was used to identify adhesive interactions and conformational changes in mucin/polymer double layers. After applying the regularized method of deconvolution in the analysis, the formation of hydrogen bonds between the carboxyl groups of the BSM and PAA-b-PMMA copolymer in double layers has been found. The IR ellipsometry data, in agreement with the visible ellipsometry analysis, indicate the pH dependence of adhesion of mucin to the copolymer surface. There is an increase in the amount of hydrogen-bonded carboxyl groups in mucin deposited at a pH of 3. There is no evidence that the amide groups of the mucin participate in this bonding. At the lower pH, the IR ellipsometry spectra after deconvolution reveal an increase in the proportion of β-sheets in the BSM upon adsorption on the copolymer surface, indicating a more unfolded, aggregated structure. The IR ellipsometry data also indicated some changes in the conformational states of the side groups in the copolymer induced by entanglements and bonding interactions with the mucin macromolecules. Deconvolution provides an unprecedented level of information from the IR ellipsometry spectra and yields important insights. © 2009 Society for Applied Spectroscopy

    Analytical methods for lignocellulosic biomass structural polysaccharides

    No full text
    The use of lignocellulosic biomass has been postulated as a potential pathway toward diminishing global dependence on nonrenewable sources of chemicals and fuels. Before a specific feedstock can be selected for biochemical conversion into biofuels and bio-based chemicals, it must first be characterized to evaluate the chemical composition of the cell walls. Polysaccharides, specifically cellulose and hemicellulose, are often the focal point of these appraisals, since these constituents are the dominant substrates converted into monomeric sugars like glucose and xylose. These monosaccharides can be transformed, using microorganisms like yeast, into substances such as ethanol. Plant species containing abundant polysaccharides are highly desirable, as higher quantities of sugars should translate into larger end-product yields. Given the vast pool of potential feedstocks, qualitative and quantitative analytical methods are needed to assess cell wall polysaccharides. Many of these tools, such as wet chemical and chromatographic techniques, have been ubiquitously used for some time. Shortcomings in these analyses, however, prevent their usage in screening large sample sets for quintessential, high-yield, fuel-producing traits. This chapter briefly summarizes how analytical spectroscopy can lessen some of these limitations and how it has been utilized for polysaccharide analysis
    corecore