45 research outputs found

    Self-Motion Holds a Special Status in Visual Processing

    Get PDF
    Agency plays an important role in self-recognition from motion. Here, we investigated whether our own movements benefit from preferential processing even when the task is unrelated to self-recognition, and does not involve agency judgments. Participants searched for a moving target defined by its known shape among moving distractors, while continuously moving the computer mouse with one hand. They thereby controlled the motion of one item, which was randomly either the target or any of the distractors, while the other items followed pre-recorded motion pathways. Performance was more accurate and less prone to degradation as set size increased when the target was the self-controlled item. An additional experiment confirmed that participant-controlled motion was not physically more salient than motion recorded offline. We found no evidence that self-controlled items captured attention. Taken together, these results suggest that visual events are perceived more accurately when they are the consequences of our actions, even when self-motion is task irrelevant

    On the limits of top-down control of visual selection

    Get PDF
    In the present study, observers viewed displays in which two equally salient color singletons were simultaneously present. Before each trial, observers received a word cue (e.g., the word red, or green) or a symbolic cue (a circle colored red or green) telling them which color singleton to select on the upcoming trial. Even though many theories of visual search predict that observers should be able to selectively attend the target color singleton, the results of the present study show that observers could not select the target singleton without interference from the irrelevant color singleton. The results indicate that the irrelevant color singleton captured attention. Only when the color of the target singleton remained the same from one trial to the next was selection perfect—an effect that is thought to be the result of passive automatic intertrial priming. The results of the present study demonstrate the limits of top-down attentional control

    The solid-state photo-CIDNP effect

    Get PDF
    The solid-state photo-CIDNP effect is the occurrence of a non-Boltzmann nuclear spin polarization in rigid samples upon illumination. For solid-state NMR, which can detect this enhanced nuclear polarization as a strong modification of signal intensity, the effect allows for new classes of experiments. Currently, the photo- and spin-chemical machinery of various RCs is studied by photo-CIDNP MAS NMR in detail. Until now, the effect has only been observed at high magnetic fields with 13C and 15N MAS NMR and in natural photosynthetic RC preparations in which blocking of the acceptor leads to cyclic electron transfer. In terms of irreversible thermodynamics, the high-order spin structure of the initial radical pair can be considered as a transient order phenomenon emerging under non-equilibrium conditions and as a first manifestation of order in the photosynthetic process. The solid-state photo-CIDNP effect appears to be an intrinsic property of natural RCs. The conditions of its occurrence seem to be conserved in evolution. The effect may be based on the same fundamental principles as the highly optimized electron transfer. Hence, the effect may allow for guiding artificial photosynthesis

    Atiprimod blocks STAT3 phosphorylation and induces apoptosis in multiple myeloma cells

    Get PDF
    Multiple myeloma (MM) accounts for 1 % of all cancer deaths. Although treated aggressively, almost all myelomas eventually recur and become resistant to treatment. Atiprimod (2-(3-Diethylaminopropyl)-8,8-dipropyl-2-azaspiro[4,5] decane dimaleate) has exerted anti-inflammatory activities and inhibited oeteoclast-induced bone resorption in animal models and been well tolerated in patients with rheumatoid arthritis in phase I clinical trials. Therefore, we investigated its activity in MM cells and its mechanism of action. We found that Atiprimod inhibited proliferation of the myeloma cell lines U266-B1, OCI-MY5, MM-1, and MM-1R in a time- and dose-dependent manner. Atiprimod blocked U266-B1 myeloma cells in the G0/G1 phase, preventing cell cycle progression. Furthermore, Atiprimod inhibited signal transducer and activator of transcription (STAT) 3 activation, blocking the signalling pathway of interleukin-6, which contributes to myeloma cell proliferation and survival, and downregulated the antiapoptotic proteins Bcl-2, Bcl-XL, and Mcl-1. Incubation of U266-B1 myeloma cells with Atiprimod induced apoptosis through the activation of caspase 3 and subsequent cleavage of the DNA repair enzyme poly(adenosine diphosphate-ribose) polymerase. Finally, Atiprimod suppressed myeloma colony-forming cell proliferation in fresh marrow cells from five patients with newly diagnosed MM in a dose-dependent fashion. These data suggest that Atiprimod has a role in future therapies for MM

    Er is meer dan hebzucht

    No full text

    Spiraling down into corruption: a dynamic analysis of the social identity processes that cause corruption in organizations to grow

    No full text
    To date, theory and research on corruption in organizations have primarily focused on its static antecedents. This article focuses on the spread and growth of corruption in organizations. For this purpose, three downward organizational spirals are formulated: the spiral of divergent norms, the spiral of pressure, and the spiral of opportunity. Social Identity Theory is used to explain the mechanisms of each of these spirals. Our dynamic perspective contributes to a greater understanding of the development of corruption in organizations and opens up promising avenues for future research
    corecore