4 research outputs found

    Fully Metal-Coated Scanning Near-Field Optical Microscopy Probes with Spiral Corrugations for Superfocusing under Arbitrarily Oriented Linearly Polarised Excitation

    Get PDF
    We study the effect of a spiral corrugation on the outer surface of a fully metal-coated scanning near-field optical microscopy (SNOM) probe using the finite element method. The introduction of a novel form of asymmetry, devoid of any preferential spatial direction and covering the whole angular range of the originally axisymmetric tip, allows attaining strong field localization for a linearly polarised mode with arbitrary orientation. Compared to previously proposed asymmetric structures which require linearly polarised excitation properly oriented with respect to the asymmetry, such a configuration enables significant simplification in mode injection. In fact, not only is the need for the delicate procedure to generate radially polarised beams overcome, but also the relative alignment between the linearly polarised beam and the tip modification is no longer critical

    Performance of Scanning Near-Field Optical Microscope Probes with Single Groove and Various Metal Coatings

    Get PDF
    We investigate the performance of a simple corrugated aperture scanning near-field optical microscope (SNOM) probe with various cladding metals. The probes have only one corrugation, however, they offer increased transmission over both uncorrugated probes and those with many grooves. Enhancement of light throughput results from excitation of surface plasmons at the corrugation at the core–cladding interface. We show how the choice of metal influences radiation properties of grooved probes
    corecore