15 research outputs found
Higgs boson gluon-fusion production beyond threshold in N3LO QCD
In this article, we compute the gluon fusion Higgs boson cross-section at
N3LO through the second term in the threshold expansion. This calculation
constitutes a major milestone towards the full N3LO cross section. Our result
has the best formal accuracy in the threshold expansion currently available,
and includes contributions from collinear regions besides subleading
corrections from soft and hard regions, as well as certain logarithmically
enhanced contributions for general kinematics. We use our results to perform a
critical appraisal of the validity of the threshold approximation at N3LO in
perturbative QCD
A rotating annulus driven by localized convective forcing: a new atmosphere-like experiment
We present an experimental study of flows in a
cylindrical rotating annulus convectively forced by local heating
in an annular ring at the bottom near the external wall
and via a cooled circular disk near the axis at the top surface
of the annulus. This new configuration is distinct from
the classical thermally-driven annulus analogue of the atmosphere
circulation, in which thermal forcing is applied
uniformly on the sidewalls, but with a similar aim to investigate
the baroclinic instability of a rotating, stratified
flow subject to zonally symmetric forcing. Two vertically
and horizontally displaced heat sources/sinks are arranged
so that, in the absence of background rotation, statically unstable
Rayleigh-BĂ©nard convection would be induced above
the source and beneath the sink, thereby relaxing strong constraints
placed on background temperature gradients in previous
experimental configurations based on the conventional
rotating annulus. This better emulates local vigorous convection
in the tropics and polar regions of the atmosphere
whilst also allowing stably-stratified baroclinic motion in
the central zone of the annulus, as in midlatitude regions in
the Earthâs atmosphere. Regimes of flow are identified, depending
mainly upon control parameters that in turn depend
on rotation rate and the strength of differential heating. Several
regimes exhibit baroclinically unstable flows which are
qualitatively similar to those previously observed in the classical
thermally-driven annulus, However, in contrast to the
classical configuration, they typically exhibit more spatiotemporal
complexity. Thus, several regimes of flow demonstrate the equilibrated co-existence of, and interaction between,
free convection and baroclinic wave modes. These
new features were not previously observed in the classical
annulus and validate the new setup as a tool for exploring
fundamental atmosphere-like dynamics in a more realistic
framework. Thermal structure in the fluid is investigated and
found to be qualitatively consistent with previous numerical
results, with nearly isothermal conditions respectively above
and below the heat source and sink, and stably-stratified,
sloping isotherms in the near-adiabatic interior
A factorization approach to next-to-leading-power threshold logarithms
Threshold logarithms become dominant in partonic cross sections when the selected final state forces gluon radiation to be soft or collinear. Such radiation factorizes at the level of scattering amplitudes, and this leads to the resummation of threshold logarithms which appear at leading power in the threshold variable. In this paper, we consider the extension of this factorization to include effects suppressed by a single power of the threshold variable. Building upon the Low-Burnett-Kroll-Del Duca (LBKD) theorem, we propose a decomposition of radiative amplitudes into universal building blocks, which contain all effects ultimately responsible for next-to-leading-power (NLP) threshold logarithms in hadronic cross sections for electroweak annihilation processes. In particular, we provide a NLO evaluation of the radiative jet function, responsible for the interference of next-to-soft and collinear effects in these cross sections. As a test, using our expression for the amplitude, we reproduce all abelian-like NLP threshold logarithms in the NNLO Drell-Yan cross section, including the interplay of real and virtual emissions. Our results are a significant step towards developing a generally applicable resummation formalism for NLP threshold effects, and illustrate the breakdown of next-to-soft theorems for gauge theory amplitudes at loop level