30 research outputs found

    A de Sitter Hoedown

    Full text link
    Rotating black holes in de Sitter space are known to have interesting limits where the temperatures of the black hole and cosmological horizon are equal. We give a complete description of the thermal phase structure of all allowed rotating black hole configurations. Only one configuration, the rotating Nariai limit, has the black hole and cosmological horizons both in thermal and rotational equilibrium, in that both the temperatures and angular velocities of the two horizons coincide. The thermal evolution of the spacetime is shown to lead to the pure de Sitter spacetime, which is the most entropic configuration. We then provide a comprehensive study of the wave equation for a massless scalar in the rotating Nariai geometry. The absorption cross section at the black hole horizon is computed and a condition is found for when the scattering becomes superradiant. The boundary-to-boundary correlators at finite temperature are computed at future infinity. The quasinormal modes are obtained in explicit form. Finally, we obtain an expression for the expectation value of the number of particles produced at future infinity starting from a vacuum state with no incoming particles at past infinity. Some of our results are used to provide further evidence for a recent holographic proposal between the rotating Nariai geometry and a two-dimensional conformal field theory.Comment: 35 + 1 pages, 9 figures; v3: typos correcte

    Non-minimal coupling of the Higgs boson to curvature in an inflationary universe

    Get PDF
    In the absence of new physics around 10^10 GeV, the electroweak vacuum is at best metastable. This represents a major challenge for high scale in ationary models as, during the early rapid expansion of the universe, it seems difficult to understand how the Higgs vacuum would not decay to the true lower vacuum of the theory with catas- trophic consequences if inflation took place at a scale above 10^10 GeV. In this paper we show that the non-minimal coupling of the Higgs boson to curvature could solve this problem by generating a direct coupling of the Higgs boson to the inflationary potential thereby stabilizing the electroweak vacuum. For specific values of the Higgs field initial condition and of its non-minimal coupling, inflation can drive the Higgs field to the electroweak vacuum quickly during inflation
    corecore