3 research outputs found

    Spacetime Noncommutativity and Antisymmetric Tensor Dynamics in the Early Universe

    Full text link
    This paper investigates the possible cosmological implications of the presence of an antisymmetric tensor field related to a lack of commutatitivity of spacetime coordinates at the Planck era. For this purpose, such a field is promoted to a dynamical variable, inspired by tensor formalism. By working to quadratic order in the antisymmetric tensor, we study the field equations in a Bianchi I universe in two models: an antisymmetric tensor plus scalar field coupled to gravity, or a cosmological constant and a free massless antisymmetric tensor. In the first scenario, numerical integration shows that, in the very early universe, the effects of the antisymmetric tensor can prevail on the scalar field, while at late times the former approaches zero and the latter drives the isotropization of the universe. In the second model, an approximate solution is obtained of a nonlinear ordinary differential equation which shows how the mean Hubble parameter and the difference between longitudinal and orthogonal Hubble parameter evolve in the early universe.Comment: 25 pages, Revtex file, 4 figures in attachmen
    corecore