71 research outputs found

    Energy Level Statistics of the U(5) and O(6) Symmetries in the Interacting Boson Model

    Get PDF
    We study the energy level statistics of the states in U(5) and O(6) dynamical symmetries of the interacting boson model and the high spin states with backbending in U(5) symmetry. In the calculations, the degeneracy resulting from the additional quantum number is eliminated manually. The calculated results indicate that the finite boson number NN effect is prominent. When NN has a value close to a realistic one, increasing the interaction strength of subgroup O(5) makes the statistics vary from Poisson-type to GOE-type and further recover to Poisson-type. However, in the case of NN \to \infty, they all tend to be Poisson-type. The fluctuation property of the energy levels with backbending in high spin states in U(5) symmetry involves a signal of shape phase transition between spherical vibration and axial rotation.Comment: 38 pages, 13 figure

    Quadrupole shape invariants in the interacting boson model

    Get PDF
    In terms of the Interacting Boson Model, shape invariants for the ground state, formed by quadrupole moments up to sixth order, are studied in the dynamical symmetry limits and, for the first time, over the whole structural range of the IBM-1. The results are related to the effective deformation parameters and their fluctuations in the geometrical model. New signatures that can distinguish vibrator and gamma-soft rotor structures, and one that is related to shape coexistence, are identified.Comment: 10 pages, ReVTeX, epsf, 2 Postscript figures include

    A study of randomness, correlations and collectivity in the nuclear shell model

    Get PDF
    A variable combination of realistic and random two-body interactions allows the study of collective properties, such as the energy spectra and B(E2) transition strengths in 44Ti, 48Cr and 24Mg. It is found that the average energies of the yrast band states maintain the ordering for any degree of randomness, but the B(E2) values lose their quadrupole collectivity when randomness dominates the Hamiltonian. The high probability of the yrast band to be ordered in the presence of pure random forces exhibits the strong correlations between the different members of the band.Comment: 8 pages, 10 figures, 8 tables, submitted to Physical Review

    F-spin as a Partial Symmetry

    Get PDF
    We use the empirical evidence that F-spin multiplets exist in nuclei for only selected states as an indication that F-spin can be regarded as a partial symmetry. We show that there is a class of non-F-scalar IBM-2 Hamiltonians with partial F-spin symmetry, which reproduce the known systematics of collective bands in nuclei. These Hamiltonians predict that the scissors states have good F-spin and form F-spin multiplets, which is supported by the existing data.Comment: 14 pages, 1 figur

    Mean-field analysis of interacting boson models with random interactions

    Get PDF
    We investigate the origin of the regular features observed in numerical studies of the interacting boson model with random interactions, in particular the dominance of L=0 ground states and the occurrence of vibrational and rotational band structures. It is shown that all of these properties can be interpreted and explained in terms of a Hartree-Bose mean-field analysis, in which different regions of the parameter space are associated with geometric shapes. The same conclusions hold for the vibron model.Comment: 8 pages, 4 figures, 2 tables. Physical Review C, in pres

    Semiempirical Shell Model Masses with Magic Number Z = 126 for Superheavy Elements

    Get PDF
    A semiempirical shell model mass equation applicable to superheavy elements up to Z = 126 is presented and shown to have a high predictive power. The equation is applied to the recently discovered superheavy nuclei Z = 118, A = 293 and Z = 114, A = 289 and their decay products.Comment: 7 pages, including 2 figures and 2 table

    Cluster Interpretation of Properties of Alternating Parity Bands in Heavy Nuclei

    Full text link
    The properties of the states of the alternating parity bands in actinides, Ba, Ce and Nd isotopes are analyzed within a cluster model. The model is based on the assumption that cluster type shapes are produced by the collective motion of the nuclear system in the mass asymmetry coordinate. The calculated spin dependences of the parity splitting and of the electric multipole transition moments are in agreement with the experimental data.Comment: 29 pages, 10 figure

    Semiempirical Shell Model Masses with Magic Number Z=126 for Translead Elements with N smaller or equal to 126

    Full text link
    A semiempirical shell model mass equation based on magic number Z=126 and applicable to translead elements with N smaller or equal to 126 is presented. For alpha decay energies the equation is shown to have a high predictive power and an rms deviation from the data of about 100 keV. The rms deviations for masses and other mass differences are between about 200 and 300 keV.Comment: 8 pages including 3 figures and 3 table

    Identical transitions in the strongly deformed Sr-99 and Sr-100

    Full text link
    The decay of the very neutron-rich nucleus Rb-100 has been studied by gamma-spectroscopy of on-line mass-separated samples. Schemes for beta-decay to Sr-100 and beta-n-decay to Sr-99 are presented. New sets of transitions in Sr-99 and Sr-100 with identical energies are observed. All identical bands so far observed in neutron-rich Sr isotopes obey a simple energy rule valid for even-even, odd-even and odd-odd bands.Comment: 31 pages, 7 figures, Phys. Rev. C, in prin
    corecore