85 research outputs found

    Machine-Related Backgrounds in the SiD Detector at ILC

    Full text link
    With a multi-stage collimation system and magnetic iron spoilers in the tunnel, the background particle fluxes on the ILC detector can be substantially reduced. At the same time, beam-halo interactions with collimators and protective masks in the beam delivery system create fluxes of muons and other secondary particles which can still exceed the tolerable levels for some of the ILC sub-detectors. Results of modeling of such backgrounds in comparison to those from the e+ e- interactions are presented in this paper for the SiD detector.Comment: 29 pages, 34 figures, 7 table

    Radiation effects in a muon collider ring and dipole magnet protection

    Full text link
    The requirements and operating conditions for a Muon Collider Storage Ring (MCSR) pose significant challenges to superconducting magnets. The dipole magnets should provide a high magnetic field to reduce the ring circumference and thus maximize the number of muon collisions during their lifetime. One third of the beam energy is continuously deposited along the lattice by the decay electrons at the rate of 0.5 kW/m for a 1.5-TeV c.o.m. and a luminosity of 1034 cm-2s-1. Unlike dipoles in proton machines, the MCSR dipoles should allow this dynamic heat load to escape the magnet helium volume in the horizontal plane, predominantly towards the ring center. This paper presents the analysis and comparison of radiation effects in MCSR based on two dipole magnets designs. Tungsten masks in the interconnect regions are used in both cases to mitigate the unprecedented dynamic heat deposition and radiation in the magnet coils.Comment: 3 pp. Particle Accelerator, 24th Conference (PAC'11) 28 Mar - 1 Apr 2011: New York, US

    Detector Background at Muon Colliders

    Full text link
    Physics goals of a Muon Collider (MC) can only be reached with appropriate design of the ring, interaction region (IR), high-field superconducting magnets, machine -detector interface (MDI) and detector. Results of the most recent realistic simulation studies are presented for a 1.5-TeV MC. It is shown that appropriately designed IR and MDI with sophisticated shielding in the detector have a potential to substantially suppress the background rates in the MC detector. The main characteristics of backgrounds are studied.Comment: 8 pp. 2nd International Conference on Technology and Instrumentation in Particle Physics 2011: TIPP 2011, 9-14 Jun 2011: Chicago, Illinoi

    Optimization of a Mu2e production solenoid heat and radiation shield using MARS15

    Full text link
    A Monte-Carlo study of several Mu2e Production Solenoid (PS) absorber (heat shield) versions using the MARS15 code has been performed. Optimizations for material as well as cost (amount of tungsten) have been carried out. Studied are such quantities as the number of displacements per atom (DPA) in the helium-cooled solenoid superconducting coils, power density and dynamic heat load in various parts of the PS and its surrounding structures. Prompt dose, residual dose, secondary particle flux are also simulated in the PS structures and the experimental hall. A preliminary choice of the PS absorber design is made on the ground of these studies.Comment: 7 pp. 20th International Baldin Seminar on High Energy Physics Problems: Relativistic Nuclear Physics and Quantum Chromodynamics (ISHEPP 2010) 4-9 Oct 2010: Dubna, Russi

    Improving the Fermilab Booster Notching Efficiency, Beam Losses and Radiation Levels

    Full text link
    Currently a fast vertical 1.08-m long kicker (notcher) located in the Fermilab Booster Long-5 straight section is used to remove 3 out of 84 circulating bunches after injection to generate an abort gap. With magnetic field of 72.5 Gauss it removes only 87% of the 3-bunch intensity at 400 MeV, with 75% loss on pole tips of the focusing Booster magnets, 11% on the Long-6 collimators, and 1% in the rest of the ring. We propose to improve the notching efficiency and reduce beam loss in the Booster by using two horizontal kickers in the Long-12 section. The STRUCT calculations show that using such horizontal notchers, one can remove up to 99% of the 3-bunch intensity at 400-700 MeV, directing 96% of it to a new beam dump at the Long-13 section. This fully decouples notching and collimation. The beam dump absorbs most of the impinging proton energy in its jaws. The latter are encapsulated into an appropriate radiation shielding that reduces impact on the machine components, personnel and environment to the tolerable levels. The MARS simulations show that corresponding prompt and residual radiation levels can be reduced ten times compared to the current ones.Comment: 4 pp. 3rd International Particle Accelerator Conference (IPAC 2012) 20-25 May 2012. New Orleans, Louisian

    Target and collection optimization for muon colliders

    Full text link
    To achieve adequate luminosity in a muon collider it is necessary to produce and collect large numbers of muons. The basic method used in this paper follows closely a proposed scheme which starts with a proton beam impinging on a thick target ({approximately} one interaction length) followed by a long solenoid which collects muons resulting mainly from pion decay. Production and collection of pions and their decay muons must be optimized while keeping in mind limitations of target integrity and of the technology of magnets and cavities. Results of extensive simulations for 8 GeV protons on various targets and with various collection schemes are reported. Besides muon yields results include-energy deposition in target and solenoid to address cooling requirements for these systems. Target composition, diameter, and length are varied in this study as well as the configuration and field strengths of the solenoid channel. A curved solenoid field is introduced to separate positive and negative pions within a few meters of the target. This permits each to be placed in separate RF buckets for acceleration which effectively doubles the number of muons per bunch available for collisions and increases the luminosity fourfold

    Optimization of the Target Subsystem for the New g-2 Experiment

    Full text link
    A precision measurement of the muon anomalous magnetic moment, aμ=(g−2)/2a_{\mu} = (g-2)/2, was previously performed at BNL with a result of 2.2 - 2.7 standard deviations above the Standard Model (SM) theoretical calculations. The same experimental apparatus is being planned to run in the new Muon Campus at Fermilab, where the muon beam is expected to have less pion contamination and the extended dataset may provide a possible 7.5σ7.5\sigma deviation from the SM, creating a sensitive and complementary bench mark for proposed SM extensions. We report here on a preliminary study of the target subsystem where the apparatus is optimized for pions that have favorable phase space to create polarized daughter muons around the magic momentum of 3.094 GeV/c, which is needed by the downstream g 2 muon ring.Comment: 4 pp. 3rd International Particle Accelerator Conference (IPAC 2012) 20-25 May 2012, New Orleans, Louisian

    Muon Collider interaction region and machine-detector interface design

    Full text link
    One of the key systems of a Muon Collider (MC) - seen as the most exciting option for the energy frontier machine in the post-LHC era - is its interaction region (IR). Designs of its optics, magnets and machine-detector interface are strongly interlaced and iterative. As a result of recent comprehensive studies, consistent solutions for the 1.5-TeV c.o.m. MC IR have been found and are described here. To provide the required momentum acceptance, dynamic aperture and chromaticity, an innovative approach was used for the IR optics. Conceptual designs of large-aperture high-field dipole and high-gradient quadrupole magnets based on Nb3Sn superconductor were developed and analyzed in terms of the operating margin, field quality, mechanics, coil cooling and quench protection. Shadow masks in the interconnect regions and liners inside the magnets are used to mitigate the unprecedented dynamic heat deposition due to muon decays (~0.5 kW/m). It is shown that an appropriately designed machine-detector interface (MDI) with sophisticated shielding in the detector has a potential to substantially suppress the background rates in the MC detector.Comment: 3 pp. Particle Accelerator, 24th Conference (PAC'11) 28 Mar - 1 Apr 2011: New York, US
    • …
    corecore