454 research outputs found

    Freezing in random graph ferromagnets

    Full text link
    Using T=0 Monte Carlo and simulated annealing simulation, we study the energy relaxation of ferromagnetic Ising and Potts models on random graphs. In addition to the expected exponential decay to a zero energy ground state, a range of connectivities for which there is power law relaxation and freezing to a metastable state is found. For some connectivities this freezing persists even using simulated annealing to find the ground state. The freezing is caused by dynamic frustration in the graphs, and is a feature of the local search-nature of the Monte Carlo dynamics used. The implications of the freezing on agent-based complex systems models are briefly considered.Comment: Published version: 1 reference deleted, 1 word added. 4 pages, 5 figure

    Stellar evolution and modelling stars

    Full text link
    In this chapter I give an overall description of the structure and evolution of stars of different masses, and review the main ingredients included in state-of-the-art calculations aiming at reproducing observational features. I give particular emphasis to processes where large uncertainties still exist as they have strong impact on stellar properties derived from large compilations of tracks and isochrones, and are therefore of fundamental importance in many fields of astrophysics.Comment: Lecture presented at the IVth Azores International Advanced School in Space Sciences on "Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds" (arXiv:1709.00645), which took place in Horta, Azores Islands, Portugal in July 201

    Star Models with Dark Energy

    Full text link
    We have constructed star models consisting of four parts: (i) a homogeneous inner core with anisotropic pressure (ii) an infinitesimal thin shell separating the core and the envelope; (iii) an envelope of inhomogeneous density and isotropic pressure; (iv) an infinitesimal thin shell matching the envelope boundary and the exterior Schwarzschild spacetime. We have analyzed all the energy conditions for the core, envelope and the two thin shells. We have found that, in order to have static solutions, at least one of the regions must be constituted by dark energy. The results show that there is no physical reason to have a superior limit for the mass of these objects but for the ratio of mass and radius.Comment: 20 pages, 1 figure, references and some comments added, typos corrected, in press GR
    corecore